The chlorophyll fluorescence parameters of Kobresia humilis Serg. and Polygonum viviparum L. grown at two different altitudes (3?200 m, 3?980 m) were measured and the ultrastructure of chloroplasts were observ...The chlorophyll fluorescence parameters of Kobresia humilis Serg. and Polygonum viviparum L. grown at two different altitudes (3?200 m, 3?980 m) were measured and the ultrastructure of chloroplasts were observed for studying the photosynthetic adaptability of plants to the influences of stress conditions in alpine environment. Rfd _values, the vitality index, in leaves of K. humilis and P.viviparum grown at 3?980 m were higher than those at 3?200 m. The higher ratio of F v/F o and F v/F m in leaves of K. humilis and P.viviparum indicated that the rate of photosynthetic conversion of light energy increased at higher altitude. Ratios of F v/F o and F v/F m and Rfd _values in K.humilis were higher than that in P.viviparum grown at the same altitude. There were more irregular chloroplasts in leaves of both species grown at higher altitude. Many irregular chloroplasts such as swollen thylakoid, deformed chloroplast envelope, were observed in P.viviparum grown at 3?980 m, but few in K. humilis . These results were discussed in relation to the photosynthetic adaptability of alpine plants and the different adaptive competence between K.humilis and P.viviparum .展开更多
This paper evaluated the impacts of mounds created by the plateau pika (Ochotona curzoniae) on the vegetation composition, structure, and species diversity of an alpine Kobresia steppe meadow in Nagqu County, Tibet ...This paper evaluated the impacts of mounds created by the plateau pika (Ochotona curzoniae) on the vegetation composition, structure, and species diversity of an alpine Kobresia steppe meadow in Nagqu County, Tibet Autonomous Region, China. Based on mound height or the depth of erosion pit, we defined five stages of erosion and compared the floristic features of communities at these stages with those in undisturbed sites. In the study area, the mounds and pits covered up to 7% of the total area. Lancea tibetica, Lamiophlomis rotata, and Potentilla biflarca were the dominant species in erosion pits, and Kobresia pygmaea, the dominant species in undisturbed sites, became a companion species in eroded areas. In the process of erosion, the original vegetation was covered by soil ejected by the pika, then the mounds were gradually eroded by wind and rain, and finally erosion pits formed. The vegetation coverage increased with increasing erosion stages but remained significantly lower than that in undisturbed sites. Improved coverage eventually reduced soil erosion, and pit depth eventually stabilized at around 20cm. Aboveground biomass increased with increasing erosion stage, but the proportion of low-quality forage reached more than 94%. The richness index and Shannon-Wiener index increased significantly with increasing erosion stage, but the richness index in mound and pit areas was significantly lower than that in undisturbed sites.展开更多
The impacts of desertification on the vegetation composition, structure, and species diversity of alpine Kobresia steppe meadow were evaluated in an area of severe desertification in Anduo County, Tibet Autonomous Reg...The impacts of desertification on the vegetation composition, structure, and species diversity of alpine Kobresia steppe meadow were evaluated in an area of severe desertification in Anduo County, Tibet Autonomous Region, northern China. We investigated and analyzed the floristic features of communities at four different stages of desertification (slight desertification [SLD], moderate desertification [MD], severe desertification [SD], and very severe desertification [VSD]). The composition and structure of the alpine Kobresia steppe meadow at the SLD site differed significantly from that at the MD, SD, and VSD sites. Species that were more drought resistant and inedible by livestock were the dominant species at the SD site. No plants were found in the shifting dunes of the VSD site. Species diversity also decreased with increasing desertification. The SLD site had the largest mean number of species and individuals and the largest richness index; the MD grassland had the largest Shannon-Wiener index and evenness index, but the smallest Simpson’s index. The vegetation cover declined from 91.8% to 34.8% as desertification increased from SLD to SD, and reached 0% in VSD areas with shifting dunes.展开更多
Although soil respiration is the largest contributor to C flux from terrestrial ecosystems to the atmosphere, our understanding of its characteristics and carbon budget in alpine meadow is rather limited because of ex...Although soil respiration is the largest contributor to C flux from terrestrial ecosystems to the atmosphere, our understanding of its characteristics and carbon budget in alpine meadow is rather limited because of extremely geographic situation. This study was designed to examine soil CO<sub>2</sub> efflux characteristics of diurnal and seasonal variation, thus obtaining estimates of carbon balance of <em>Kobresia pygmaea</em> meadow in Qinghai-Tibet plateau. The results showed that the soil respiration of diurnal and seasonal rate changed little in growing season and was mainly affected by temperature, and single peak curve that showed afternoon appeared. Composite model which was set by soil respiration rate, soil moisture content and temperature (atmospheric temperature and soil temperature) could explain better the variations of soil respiration rate. The variation range of <em>Q</em><sub>10</sub> ranged from 1.28 to 2.34, which was sensitive to temperature in green-up period and late growth stage, and decreased in growth peak period. Meanwhile, during the growing seasons the observed amount of annual carbon fixation via primary production for <em>Kobresia pygmaea</em> meadow ecosystem was about 120.21 g C<span style="white-space:nowrap;">·</span>m<sup>-2</sup><span style="white-space:nowrap;">·</span>a<sup>-1</sup>. The carbon dioxide output via soil heterotrophic respiration was about 37.54 g C<span style="white-space:nowrap;">·</span>m<sup>-2</sup><span style="white-space:nowrap;">·</span>a<sup>-1</sup>. So carbon budget had more input than output. The <em>Kobresia pygmaea</em> meadow ecosystem has stronger potential to absorb carbon dioxide, it was a sink of atmospheric CO<sub>2</sub>, and the plant community had a net carbon gain of 82.67 g C<span style="white-space:nowrap;">·</span>m<sup>-2</sup><span style="white-space:nowrap;">·</span>a<sup>-1</sup>.展开更多
This work analyzed the genetic diversity of Kobresia accessions at the molecular level, and further obtained the necessary information for breeding and germplasm evaluation. Genomic DNA of Kobresia was amplified with ...This work analyzed the genetic diversity of Kobresia accessions at the molecular level, and further obtained the necessary information for breeding and germplasm evaluation. Genomic DNA of Kobresia was amplified with four E+3 and M+3 primer combinations with AFLP (amplified fragment length polymorphism). AFLP analysis produced 164 scorable bands, of which 154 (93.96%) were polymorphic. The mean Nei's gene diversity index (H) was 0.2430, and the Shannon's information index (I) was 0.4012, indicating the abundant genetic diversity of Kobresia. The 11 Kobresia accessions from Tibetan Plateau, China, can be classified into five groups after cluster analysis based on the UPGMA (unweigbted pair group method arithmetic average) method. In general, there was abundant genetic diversity among Kobresia accessions resources, and the genetic coefficient was unrelated to their geographic latitude. Natural habitats influenced genetic differentiation of Kobresia.展开更多
[Objective] To investigate the relationship between the grassland caterpillar with different grades and the structure of alpine Kobresia meadow or soil feature. [Method] A total of 10 plots (20.00 m × 20.00 m) ...[Objective] To investigate the relationship between the grassland caterpillar with different grades and the structure of alpine Kobresia meadow or soil feature. [Method] A total of 10 plots (20.00 m × 20.00 m) were chosen. In each plot, five smaller plots (5.00 m × 5.00 m) were randomly selected and six sample plots (0.25 m × 0.25 m) were then selected in each smaller plot. The biomass, vegetation height, grasslayer thickness, bare land area, soil moisture and total vegetation cover degree were determined. Data were analyzed statistically by Excel 2003 and SPSS 13.0 software. [ Result] There was a significant difference (P 〈 0.05) between the grassland caterpillars at different hazard grades and the structure of alpine Kobresia meadow or soil properties. [ Conclusion] With the increase of grassland caterpillar density, the plant community structure of alpine Kobresia meadows changes from sedge family-dominant community to the forbs-dominant community.展开更多
[ Objective] To reveal structure and function of alpine meadow ecosystem and thus to provide a scientific basis for development, utilization and scientific management of alpine meadow pasture as well as sustainable de...[ Objective] To reveal structure and function of alpine meadow ecosystem and thus to provide a scientific basis for development, utilization and scientific management of alpine meadow pasture as well as sustainable development of grassland agriculture. [ Method] Charactedstics of Kobresia humilis communities with primary vegetation (community I) and degraded vegetation (community II) were analyzed. [Result] Species richness, biodiversity index and biomass of the community I were respectively 42, 3. 531 and 3 553.1 g/m^2, which were respectively higher than those of the community II (37, 2.270 and 3 391.1 g/m^2). Correlation analysis shows that community biomass was correlated positively with the dchness index ( P 〈 0.01 ), and biodiversity index was correlated positively with the aboveground biomass and dchness index ( P 〈 0.01 ). [ Conclusion] The Kobresia humilis community I has reasonable structure and large coverage of ground vegetation, which play an important role in maintenance of biodiversity and ecosystem function.展开更多
文摘The chlorophyll fluorescence parameters of Kobresia humilis Serg. and Polygonum viviparum L. grown at two different altitudes (3?200 m, 3?980 m) were measured and the ultrastructure of chloroplasts were observed for studying the photosynthetic adaptability of plants to the influences of stress conditions in alpine environment. Rfd _values, the vitality index, in leaves of K. humilis and P.viviparum grown at 3?980 m were higher than those at 3?200 m. The higher ratio of F v/F o and F v/F m in leaves of K. humilis and P.viviparum indicated that the rate of photosynthetic conversion of light energy increased at higher altitude. Ratios of F v/F o and F v/F m and Rfd _values in K.humilis were higher than that in P.viviparum grown at the same altitude. There were more irregular chloroplasts in leaves of both species grown at higher altitude. Many irregular chloroplasts such as swollen thylakoid, deformed chloroplast envelope, were observed in P.viviparum grown at 3?980 m, but few in K. humilis . These results were discussed in relation to the photosynthetic adaptability of alpine plants and the different adaptive competence between K.humilis and P.viviparum .
基金Under the auspices of the Science and Technology Committee of Tibet Autonomous Region (No. 200101046)
文摘This paper evaluated the impacts of mounds created by the plateau pika (Ochotona curzoniae) on the vegetation composition, structure, and species diversity of an alpine Kobresia steppe meadow in Nagqu County, Tibet Autonomous Region, China. Based on mound height or the depth of erosion pit, we defined five stages of erosion and compared the floristic features of communities at these stages with those in undisturbed sites. In the study area, the mounds and pits covered up to 7% of the total area. Lancea tibetica, Lamiophlomis rotata, and Potentilla biflarca were the dominant species in erosion pits, and Kobresia pygmaea, the dominant species in undisturbed sites, became a companion species in eroded areas. In the process of erosion, the original vegetation was covered by soil ejected by the pika, then the mounds were gradually eroded by wind and rain, and finally erosion pits formed. The vegetation coverage increased with increasing erosion stages but remained significantly lower than that in undisturbed sites. Improved coverage eventually reduced soil erosion, and pit depth eventually stabilized at around 20cm. Aboveground biomass increased with increasing erosion stage, but the proportion of low-quality forage reached more than 94%. The richness index and Shannon-Wiener index increased significantly with increasing erosion stage, but the richness index in mound and pit areas was significantly lower than that in undisturbed sites.
基金financially supported by the National Natural Science Foundation of China (Grant No. 40271012)the Science & Technology Committee of the Tibet Autonomous Region (Grant No. 200101046)PHD foundation of Foshan university
文摘The impacts of desertification on the vegetation composition, structure, and species diversity of alpine Kobresia steppe meadow were evaluated in an area of severe desertification in Anduo County, Tibet Autonomous Region, northern China. We investigated and analyzed the floristic features of communities at four different stages of desertification (slight desertification [SLD], moderate desertification [MD], severe desertification [SD], and very severe desertification [VSD]). The composition and structure of the alpine Kobresia steppe meadow at the SLD site differed significantly from that at the MD, SD, and VSD sites. Species that were more drought resistant and inedible by livestock were the dominant species at the SD site. No plants were found in the shifting dunes of the VSD site. Species diversity also decreased with increasing desertification. The SLD site had the largest mean number of species and individuals and the largest richness index; the MD grassland had the largest Shannon-Wiener index and evenness index, but the smallest Simpson’s index. The vegetation cover declined from 91.8% to 34.8% as desertification increased from SLD to SD, and reached 0% in VSD areas with shifting dunes.
文摘Although soil respiration is the largest contributor to C flux from terrestrial ecosystems to the atmosphere, our understanding of its characteristics and carbon budget in alpine meadow is rather limited because of extremely geographic situation. This study was designed to examine soil CO<sub>2</sub> efflux characteristics of diurnal and seasonal variation, thus obtaining estimates of carbon balance of <em>Kobresia pygmaea</em> meadow in Qinghai-Tibet plateau. The results showed that the soil respiration of diurnal and seasonal rate changed little in growing season and was mainly affected by temperature, and single peak curve that showed afternoon appeared. Composite model which was set by soil respiration rate, soil moisture content and temperature (atmospheric temperature and soil temperature) could explain better the variations of soil respiration rate. The variation range of <em>Q</em><sub>10</sub> ranged from 1.28 to 2.34, which was sensitive to temperature in green-up period and late growth stage, and decreased in growth peak period. Meanwhile, during the growing seasons the observed amount of annual carbon fixation via primary production for <em>Kobresia pygmaea</em> meadow ecosystem was about 120.21 g C<span style="white-space:nowrap;">·</span>m<sup>-2</sup><span style="white-space:nowrap;">·</span>a<sup>-1</sup>. The carbon dioxide output via soil heterotrophic respiration was about 37.54 g C<span style="white-space:nowrap;">·</span>m<sup>-2</sup><span style="white-space:nowrap;">·</span>a<sup>-1</sup>. So carbon budget had more input than output. The <em>Kobresia pygmaea</em> meadow ecosystem has stronger potential to absorb carbon dioxide, it was a sink of atmospheric CO<sub>2</sub>, and the plant community had a net carbon gain of 82.67 g C<span style="white-space:nowrap;">·</span>m<sup>-2</sup><span style="white-space:nowrap;">·</span>a<sup>-1</sup>.
基金supported by the Key International Science and Technology Cooperation Program of China(2006DFA33630)the Key Science and Technology Research Program of Tibet,China(2005011)
文摘This work analyzed the genetic diversity of Kobresia accessions at the molecular level, and further obtained the necessary information for breeding and germplasm evaluation. Genomic DNA of Kobresia was amplified with four E+3 and M+3 primer combinations with AFLP (amplified fragment length polymorphism). AFLP analysis produced 164 scorable bands, of which 154 (93.96%) were polymorphic. The mean Nei's gene diversity index (H) was 0.2430, and the Shannon's information index (I) was 0.4012, indicating the abundant genetic diversity of Kobresia. The 11 Kobresia accessions from Tibetan Plateau, China, can be classified into five groups after cluster analysis based on the UPGMA (unweigbted pair group method arithmetic average) method. In general, there was abundant genetic diversity among Kobresia accessions resources, and the genetic coefficient was unrelated to their geographic latitude. Natural habitats influenced genetic differentiation of Kobresia.
基金funded by the grants from Basic Science and Research Special Fund for the State Level and Public Scientific Research Institute (Grassland Research Institute,Chinese Academy of Agricultural Sciences) and Wild Science Observation Testing Station of Alpine Meadow Grassland Resource and Ecotope of the Ministry of Agriculture
文摘[Objective] To investigate the relationship between the grassland caterpillar with different grades and the structure of alpine Kobresia meadow or soil feature. [Method] A total of 10 plots (20.00 m × 20.00 m) were chosen. In each plot, five smaller plots (5.00 m × 5.00 m) were randomly selected and six sample plots (0.25 m × 0.25 m) were then selected in each smaller plot. The biomass, vegetation height, grasslayer thickness, bare land area, soil moisture and total vegetation cover degree were determined. Data were analyzed statistically by Excel 2003 and SPSS 13.0 software. [ Result] There was a significant difference (P 〈 0.05) between the grassland caterpillars at different hazard grades and the structure of alpine Kobresia meadow or soil properties. [ Conclusion] With the increase of grassland caterpillar density, the plant community structure of alpine Kobresia meadows changes from sedge family-dominant community to the forbs-dominant community.
基金supported by the grants of the Research Fund for the Young and Middle-Aged of Qinghai University (2009-QN-16)the National of the People's Republic of China 11th Five-Year Technology Based Plan Topic (2008BAC39B04)
文摘[ Objective] To reveal structure and function of alpine meadow ecosystem and thus to provide a scientific basis for development, utilization and scientific management of alpine meadow pasture as well as sustainable development of grassland agriculture. [ Method] Charactedstics of Kobresia humilis communities with primary vegetation (community I) and degraded vegetation (community II) were analyzed. [Result] Species richness, biodiversity index and biomass of the community I were respectively 42, 3. 531 and 3 553.1 g/m^2, which were respectively higher than those of the community II (37, 2.270 and 3 391.1 g/m^2). Correlation analysis shows that community biomass was correlated positively with the dchness index ( P 〈 0.01 ), and biodiversity index was correlated positively with the aboveground biomass and dchness index ( P 〈 0.01 ). [ Conclusion] The Kobresia humilis community I has reasonable structure and large coverage of ground vegetation, which play an important role in maintenance of biodiversity and ecosystem function.