期刊文献+
共找到176篇文章
< 1 2 9 >
每页显示 20 50 100
Application of Self-Organizing Feature Map Neural Network Based on K-means Clustering in Network Intrusion Detection 被引量:5
1
作者 Ling Tan Chong Li +1 位作者 Jingming Xia Jun Cao 《Computers, Materials & Continua》 SCIE EI 2019年第7期275-288,共14页
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one... Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration. 展开更多
关键词 K-means clustering self-organizing feature map neural network network security intrusion detection NSL-KDD data set
下载PDF
Waterlogging risk assessment based on self-organizing map(SOM)artificial neural networks:a case study of an urban storm in Beijing 被引量:2
2
作者 LAI Wen-li WANG Hong-rui +2 位作者 WANG Cheng ZHANG Jie ZHAO Yong 《Journal of Mountain Science》 SCIE CSCD 2017年第5期898-905,共8页
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annu... Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng. 展开更多
关键词 Waterlogging risk assessment self-organizing map(SOM) neural network Urban storm
下载PDF
A Self-Organizing Memory Neural Network for Aerosol Concentration Prediction
3
作者 Qiang Liu Yanyun Zou Xiaodong Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第6期617-637,共21页
Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5... Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5 microns)is the chief culprit causing aerosol.To forecast the condition of PM2.5,this paper adopts the related the meteorological data and air pollutes data to predict the concentration of PM2.5.Since the meteorological data and air pollutes data are typical time series data,it is reasonable to adopt a machine learning method called Single Hidden-Layer Long Short-Term Memory Neural Network(SSHL-LSTMNN)containing memory capability to implement the prediction.However,the number of neurons in the hidden layer is difficult to decide unless manual testing is operated.In order to decide the best structure of the neural network and improve the accuracy of prediction,this paper employs a self-organizing algorithm,which uses Information Processing Capability(IPC)to adjust the number of the hidden neurons automatically during a learning phase.In a word,to predict PM2.5 concentration accurately,this paper proposes the SSHL-LSTMNN to predict PM2.5 concentration.In the experiment,not only the hourly precise prediction but also the daily longer-term prediction is taken into account.At last,the experimental results reflect that SSHL-LSTMNN performs the best. 展开更多
关键词 Haze-fog PM2.5 forecasting time series data machine learning long shortterm MEMORY neural network self-organizing algorithm information processing CAPABILITY
下载PDF
Enhanced Self-Organizing Map Neural Network for DNA Sequence Classification
4
作者 Marghny Mohamed Abeer A. Al-Mehdhar +1 位作者 Mohamed Bamatraf Moheb R. Girgis 《Intelligent Information Management》 2013年第1期25-33,共9页
The artificial neural networks (ANNs), among different soft computing methodologies are widely used to meet the challenges thrown by the main objectives of data mining classification techniques, due to their robust, p... The artificial neural networks (ANNs), among different soft computing methodologies are widely used to meet the challenges thrown by the main objectives of data mining classification techniques, due to their robust, powerful, distributed, fault tolerant computing and capability to learn in a data-rich environment. ANNs has been used in several fields, showing high performance as classifiers. The problem of dealing with non numerical data is one major obstacle prevents using them with various data sets and several domains. Another problem is their complex structure and how hands to interprets. Self-Organizing Map (SOM) is type of neural systems that can be easily interpreted, but still can’t be used with non numerical data directly. This paper presents an enhanced SOM structure to cope with non numerical data. It used DNA sequences as the training dataset. Results show very good performance compared to other classifiers. For better evaluation both micro-array structure and their sequential representation as proteins were targeted as dataset accuracy is measured accordingly. 展开更多
关键词 BIOINFORMATICS Artificial neural networks self-organizing Map CLASSIFICATION SEQUENCE ALIGNMENT
下载PDF
Research on the credit classification of practicing qualification personnel in construction market based on self-organizing neural network
5
作者 Fan Zhiqing Wang Xueqing Li Baolong 《Engineering Sciences》 EI 2011年第4期93-96,共4页
Combining with the characters of the practicing qualification personnel in construction market,evaluation method based on the self-organizing neural network is brought out to analyze the credit classification of the p... Combining with the characters of the practicing qualification personnel in construction market,evaluation method based on the self-organizing neural network is brought out to analyze the credit classification of the practicing qualification personnel. And the impact factors on the credit classification of the practicing qualification personnel,such as the number of neurons,the training steps,the dimension of neurons and the field of winning neurons are studied. Then a self-organizing competitive neural network is built. At last,a case study is conducted by taking practicing qualification personnel as an example. The research result reveals that the method can efficiently evaluate the credit of the practicing qualification personnel;thus,it could provide scientific advice to the construction enterprise to prevent relevant discreditable behaviors of some practicing qualification personnel. 展开更多
关键词 practicing qualification personnel CREDIT cluster analysis self-organizing neural network
下载PDF
3D Ice Shape Description Method Based on BLSOM Neural Network
6
作者 ZHU Bailiu ZUO Chenglin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第S01期70-80,共11页
When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes t... When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes the key task of the icing wind tunnel tests.In the icing wind tunnel test of the tail wing model of a large amphibious aircraft,in order to obtain accurate typical test ice shape,the Romer Absolute Scanner is used to obtain the 3D point cloud data of the ice shape on the tail wing model.Then,the batch-learning self-organizing map(BLSOM)neural network is used to obtain the 2D average ice shape along the model direction based on the 3D point cloud data of the ice shape,while its tolerance band is calculated using the probabilistic statistical method.The results show that the combination of 2D average ice shape and its tolerance band can represent the 3D characteristics of the test ice shape effectively,which can be used as the typical test ice shape for comparative analysis with the calculated ice shape. 展开更多
关键词 icing wind tunnel test ice shape batch-learning self-organizing map neural network 3D point cloud
下载PDF
SEGMENTATION OF RANGE IMAGE BASED ON KOHONEN NEURAL NETWORK
7
作者 Zou Ning Liu Jian Zhou Manli Li Qing(State Education Commission Res. Lab. for Image Processing & Intelligent Control. Electronic & Information Engineering Dept., Huazhong University of Science & Technology. Wuhan 430074) 《Journal of Electronics(China)》 2001年第3期237-241,共5页
This paper presents an unsupervised range image segmentation based on Kohonen neural network. At first, the derivative and partial derivative of each point are calculated and the normal in each points is gotten. With ... This paper presents an unsupervised range image segmentation based on Kohonen neural network. At first, the derivative and partial derivative of each point are calculated and the normal in each points is gotten. With the character vectors including normal and range value, self-organization map is introduced to cluster. The normal analysis is used to eliminate over-segmentation and the last result is gotten. This method avoid selecting original seeds and uses fewer samples, moreover computes rapidly. The experiment shows the better performance. 展开更多
关键词 RANGE image SEGMENTATION kohonen neural network MERGE
下载PDF
Analysis on Design of Kohonen-network System Based on Classification of Complex Signals 被引量:1
8
作者 YOU Rong yi, XU Shen chu (Dept. of Phys., Xiamen University, Xiamen 361005, CHN) 《Semiconductor Photonics and Technology》 CAS 2002年第3期174-178,185-192,共7页
The key methods of detection and classification of the electroencephalogram(EEG) used in recent years are introduced . Taking EEG for example, the design plan of Kohonen neural network system based on detection and cl... The key methods of detection and classification of the electroencephalogram(EEG) used in recent years are introduced . Taking EEG for example, the design plan of Kohonen neural network system based on detection and classification of complex signals is proposed, and both the network design and signal processing are analyzed, including pre-processing of signals, extraction of signal features, classification of signal and network topology, etc. 展开更多
关键词 Complex SIGNAL CLASSIFICATION of SIGNAL kohonen neural network
下载PDF
Modeling and optimum operating conditions for FCCU using artificial neural network 被引量:6
9
作者 李全善 李大字 曹柳林 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1342-1349,共8页
A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF ... A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness. 展开更多
关键词 radial basis function(RBF) neural network self-organizing gradient descent double-model fluid catalytic cracking unit(FCCU)
下载PDF
A NOVEL INTRUSION DETECTION MODE BASED ON UNDERSTANDABLE NEURAL NETWORK TREES 被引量:1
10
作者 Xu Qinzhen Yang Luxi +1 位作者 Zhao Qiangfu He Zhenya 《Journal of Electronics(China)》 2006年第4期574-579,共6页
Several data mining techniques such as Hidden Markov Model (HMM), artificial neural network, statistical techniques and expert systems are used to model network packets in the field of intrusion detection. In this pap... Several data mining techniques such as Hidden Markov Model (HMM), artificial neural network, statistical techniques and expert systems are used to model network packets in the field of intrusion detection. In this paper a novel intrusion detection mode based on understandable Neural Network Tree (NNTree) is pre-sented. NNTree is a modular neural network with the overall structure being a Decision Tree (DT), and each non-terminal node being an Expert Neural Network (ENN). One crucial advantage of using NNTrees is that they keep the non-symbolic model ENN’s capability of learning in changing environments. Another potential advantage of using NNTrees is that they are actually “gray boxes” as they can be interpreted easily if the num-ber of inputs for each ENN is limited. We showed through experiments that the trained NNTree achieved a simple ENN at each non-terminal node as well as a satisfying recognition rate of the network packets dataset. We also compared the performance with that of a three-layer backpropagation neural network. Experimental results indicated that the NNTree based intrusion detection model achieved better performance than the neural network based intrusion detection model. 展开更多
关键词 Intrusion detection neural network Tree (NNTree) Expert neural network (ENN) Decision Tree (DT) self-organized feature learning
下载PDF
A MULTILAYER FEEDFORWARD NEURAL NETWORK MODEL FOR VISUAL MOTION PERCEPTION
11
作者 杨先一 郭爱克 《Journal of Electronics(China)》 1992年第4期296-304,共9页
The local visual motion detection mechanism used in the visual systems of primatescan only sense the motion component oriented perpendicularly to the contrast gradient of thebrightness pattern.But the visual system of... The local visual motion detection mechanism used in the visual systems of primatescan only sense the motion component oriented perpendicularly to the contrast gradient of thebrightness pattern.But the visual system of higher animals can adaptively determine the actualdirection of motion through a learning process.In this paper a multilayered feedforward neuralnetwork model for perception of visual motion is presented.This model employs W.Reichardt’selementary motion detectors array and T.Kohonen’s self-organizing feature map.We explored theself-organizing principles for perception of visual motion.The computer simulations show thatthis neural network is able to recognize the true direction of motion through an unsupervisedlearning process.In addition,the neurons with the same or similar motion direction selectivitytend to appear in“functional columns”which seem to be qualitatively similar to the corticalmotion columns observed by electrophysiological and cytohistochemical studies in certain higherareas such as MT.It proves that motion-detection by spatio-temporal coherences,mapping,co-operation,competition,and Hebb rule may be the basic principles for the self-organization ofvisual motion perception networks. 展开更多
关键词 neural network MOTION PERCEPTION self-organIZATION Reichardt’s ALGORITHM kohonen’s ALGORITHM
下载PDF
Comparison of Electric Load Forecasting between Using SOM and MLP Neural Network 被引量:1
12
作者 Sergio Valero Carolina Senabre +3 位作者 Miguel Lopez Juan Aparicio Antonio Gabaldon Mario Ortiz 《Journal of Energy and Power Engineering》 2012年第3期411-417,共7页
Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision mak... Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision makers in the energy sector, from power generation to operation of the system. The objective of this research is to analyze the capacity of the MLP (multilayer perceptron neural network) versus SOM (self-organizing map neural network) for short-term load forecasting. The MLP is one of the most commonly used networks. It can be used for classification problems, model construction, series forecasting and discrete control. On the other hand, the SOM is a type of artificial neural network that is trained using unsupervised data to produce a low-dimensional, discretized representation of an input space of training samples in a cell map. Historical data of real global load demand were used for the research. Both neural models provide good prediction results, but the results obtained with the SOM maps are markedly better Also the main advantage of SOM maps is that they reach good results as a network unsupervised. It is much easier to train and interpret the results. 展开更多
关键词 Short-term load forecasting SOM self-organizing map) multilayer perceptron neural network electricity markets.
下载PDF
English-Chinese Neural Machine Translation Based on Self-organizing Mapping Neural Network and Deep Feature Matching
13
作者 Shu Ma 《IJLAI Transactions on Science and Engineering》 2024年第3期1-8,共8页
The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on s... The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on self-organizing mapping neural network and deep feature matching.In this model,word vector,two-way LSTM,2D neural network and other deep learning models are used to extract the semantic matching features of question-answer pairs.Self-organizing mapping(SOM)is used to classify and identify the sentence feature.The attention mechanism-based neural machine translation model is taken as the baseline system.The experimental results show that this framework significantly improves the adequacy of English-Chinese machine translation and achieves better results than the traditional attention mechanism-based English-Chinese machine translation model. 展开更多
关键词 Chinese-English translation model self-organizing mapping neural network Deep feature matching Deep learning
原文传递
基于KOHONEN神经网络的电力系统负荷动特性聚类与综合 被引量:74
14
作者 张红斌 贺仁睦 刘应梅 《中国电机工程学报》 EI CSCD 北大核心 2003年第5期1-5,43,共6页
提出了应用Kohonen神经网络解决电力负荷动态特性的聚类问题:首先对每组负荷扰动数据建模,进而将各负荷模型对相同电压激励的响应与相应的负荷有功运行水平合并形成特征向量,最后引入Kohonen神经网络进行聚类。通过对河北沧州地区1996年... 提出了应用Kohonen神经网络解决电力负荷动态特性的聚类问题:首先对每组负荷扰动数据建模,进而将各负荷模型对相同电压激励的响应与相应的负荷有功运行水平合并形成特征向量,最后引入Kohonen神经网络进行聚类。通过对河北沧州地区1996年、1997年和1998年电力负荷特性数据的聚类与综合处理发现:Kohonen神经网络是一种学习速度快、分类精度高、抗噪声能力强、并且适用于电力负荷动态特性聚类的神经网络模型。同时还发现电力负荷特性具有可重复性,这也证明了总体测辨法的可行性。若将这些典型负荷模型实用化,将有利于提高电力系统仿真准确度。 展开更多
关键词 电力系统 负荷动特性 聚类 kohonen神经网络 负荷模型 人工神经网络 仿真
下载PDF
模糊Kohonen网络在烟叶分类中的应用 被引量:11
15
作者 曹均阔 叶水生 丁香乾 《计算机工程》 EI CAS CSCD 北大核心 2005年第2期222-224,共3页
对于分类问题的处理有很多经典方法,但近年来因为人们对神经网络理论及其应用的重视,使得Kohonen网络(KN)越来越受到普遍关注。该文利用模糊控制策略将模糊c-均值算法与经典的Kohonen算法有机地结合起来,使网络性能到了很大改善。
关键词 模糊kohonen网络 烟叶分类 kohonen聚类网络 模糊控制策略 均值算法
下载PDF
Kohonen SOFM神经网络及其演化研究 被引量:13
16
作者 李宗福 邓琼波 李桓 《计算机工程与设计》 CSCD 2004年第10期1729-1730,1830,共3页
Kohonen SOFM神经网络广泛地应用于模式聚类、模式识别、拓扑不变性映射等方面。从Kohonen SOFM神经网络结构和聚类算法入手,对其演化网络进行了比较分析,并从聚类算法性能的角度给予了综述。最后针对网络结构和算法的不足,指出了需进... Kohonen SOFM神经网络广泛地应用于模式聚类、模式识别、拓扑不变性映射等方面。从Kohonen SOFM神经网络结构和聚类算法入手,对其演化网络进行了比较分析,并从聚类算法性能的角度给予了综述。最后针对网络结构和算法的不足,指出了需进一步研究的方向。 展开更多
关键词 SOFM神经网络 聚类算法 模式识别 模式聚类 映射 拓扑不变性 网络结构 性能 角度
下载PDF
基于有监督Kohonen神经网络的步态识别 被引量:25
17
作者 郭欣 王蕾 +1 位作者 宣伯凯 李彩萍 《自动化学报》 EI CSCD 北大核心 2017年第3期430-438,共9页
表面肌电信号随着时间的变化而改变,这将影响运动模式的分类精度.传统人体下肢假肢运动模式的识别算法不能保证在整个肌电控制时间内达到对运动模式的有效识别.为了解决这些问题,本文提取步态初期200 ms的信号的特征值,将无监督和有监督... 表面肌电信号随着时间的变化而改变,这将影响运动模式的分类精度.传统人体下肢假肢运动模式的识别算法不能保证在整个肌电控制时间内达到对运动模式的有效识别.为了解决这些问题,本文提取步态初期200 ms的信号的特征值,将无监督和有监督的Kohonen神经网络算法应用到大腿截肢者残肢侧的步态识别中,并与传统BP神经网络进行了对比.结果表明,有监督的Kohonen神经网络算法将五种路况下步态的平均识别率提高到88.4%,优于无监督的Kohonen神经网络算法和BP神经网络. 展开更多
关键词 表面肌电信号 智能假肢 特征提取 有监督kohonen神经网络 步态识别
下载PDF
基于分形理论和Kohonen神经网络的纹理图像分割方法 被引量:13
18
作者 李厚强 刘政凯 林峰 《计算机工程与应用》 CSCD 北大核心 2001年第7期44-46,共3页
分形理论作为描述自然现象的一种模型,受到人们越来越多的重视。该文提出采用分形维数和多重分形广义维数谱q-D(q)作为纹理特征,采用自组织神经网络Kohonen网络作为分类器的图象分割方法。通过对纹理图象的分割实验,结果令人满意... 分形理论作为描述自然现象的一种模型,受到人们越来越多的重视。该文提出采用分形维数和多重分形广义维数谱q-D(q)作为纹理特征,采用自组织神经网络Kohonen网络作为分类器的图象分割方法。通过对纹理图象的分割实验,结果令人满意,证实该方法的有效性。 展开更多
关键词 分数维 纹理图像 图像分割 分形理论 图象处理 kohonen神经网络
下载PDF
基于Kohonen和BP神经网络的文本学习算法 被引量:6
19
作者 傅忠谦 王新跃 +2 位作者 周佩玲 彭虎 陶小丽 《计算机工程与应用》 CSCD 北大核心 2001年第1期76-78,共3页
介绍了基于Kohonen和BP神经网络结合的Internet网上文本学习算法。它采用向量空间模型对文本进行编码,利用 Kohonen网络的自组织特性和BP网络的非线性特性进行学习。经过训练,算法能够有效地对输入文本进... 介绍了基于Kohonen和BP神经网络结合的Internet网上文本学习算法。它采用向量空间模型对文本进行编码,利用 Kohonen网络的自组织特性和BP网络的非线性特性进行学习。经过训练,算法能够有效地对输入文本进行判断,给出一个评价等级,标识出文本和用户兴趣的相关程度,从而为基于Internet的信息过滤、智能浏览等处理提供基础。 展开更多
关键词 kohonen神经网络 BP神经网络 INTERNET网 信息检
下载PDF
Kohonen网络与BP网络的集成应用研究 被引量:8
20
作者 丁香乾 曹均阔 贺英 《青岛海洋大学学报(自然科学版)》 CSCD 北大核心 2003年第4期615-620,共6页
本文介绍了 Kohonen神经网络对输入数据进行聚类方法在卷烟配方中的应用 ,提出了从核心样本动态搜索 BP网络训练样本的新探索 ,摒弃了过去 BP算法中训练样本固定不变 ,互不相交的方法 ,实现了 BP网络和 Kohonen网络动态无缝集成。
关键词 BP神经网络 kohonen神经网络 核心样本 动态无缝集成 卷烟配方 聚类方法 烟叶
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部