As for the backward and forward equation of nonhomogeneous(H, Q) -processes,we proof them in a new way. On the base of that, this paper gives the direct computational formalfor one dimensional distribution of the nonh...As for the backward and forward equation of nonhomogeneous(H, Q) -processes,we proof them in a new way. On the base of that, this paper gives the direct computational formalfor one dimensional distribution of the nonhomogeneous(H, Q) -process.展开更多
The existence and uniqueness results of fully coupled forward-backward stochastic differential equations with stopping time (unbounded) is obtained. One kind of comparison theorem for this kind of equations is also pr...The existence and uniqueness results of fully coupled forward-backward stochastic differential equations with stopping time (unbounded) is obtained. One kind of comparison theorem for this kind of equations is also proved.展开更多
A general type of forward-backward doubly stochastic differential equations (FBDSDEs) is studied. It extends many important equations that have been well studied, including stochastic Hamiltonian systems. Under some...A general type of forward-backward doubly stochastic differential equations (FBDSDEs) is studied. It extends many important equations that have been well studied, including stochastic Hamiltonian systems. Under some much weaker monotonicity assumptions, the existence and uniqueness of measurable solutions are established with a incthod of continuation. Furthermore, the continuity and differentiability of the solutions to FBDSDEs depending on parameters is discussed.展开更多
This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information avail...This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed.展开更多
This paper derives the fractional backward Kolmogorov equations in fractal space-time based on the construction of a model for dynamic trajectories. It shows that for the type of fractional backward Kolmogorov equatio...This paper derives the fractional backward Kolmogorov equations in fractal space-time based on the construction of a model for dynamic trajectories. It shows that for the type of fractional backward Kolmogorov equation in the fractal time whose coefficient functions are independent of time, its solution is equal to the transfer probability density function of the subordinated process X(Sα (t)), the subordinator Sα (t) is termed as the inverse-time a-stable subordinator and the process X(τ) satisfies the corresponding time homogeneous Ito stochastic differential equation.展开更多
A finite difference method is introduced to solve the forward-backward heat equation in two space dimensions. In this procedure, the backward and forward difference scheme in two subdomains and a coarse-mesh second-or...A finite difference method is introduced to solve the forward-backward heat equation in two space dimensions. In this procedure, the backward and forward difference scheme in two subdomains and a coarse-mesh second-order central difference scheme at the middle interface are used. Maximum norm error estimate for the procedure is derived. Then an iterative method based on domain decomposition is presented for the numerical scheme and the convergence of the given method is established. Then numerical experiments are presented to support the theoretical analysis.展开更多
This paper is devoted to path-dependent kinetics equations arising, in particular, from the analysis of the coupled backward-forward systems of equations of mean field games. We present local well-posedness, global ex...This paper is devoted to path-dependent kinetics equations arising, in particular, from the analysis of the coupled backward-forward systems of equations of mean field games. We present local well-posedness, global existence and some regularity results for these equations.展开更多
In this paper,we propose a new numerical method which is a least squares approximaton based on pseudospectral method for the Forward-Backward heat equation. The existence and uniqueness of the solution of the least sq...In this paper,we propose a new numerical method which is a least squares approximaton based on pseudospectral method for the Forward-Backward heat equation. The existence and uniqueness of the solution of the least squares approximation are proved. Error estimates for this approximation are given,which show that tile order of convergence depends only on the regularity of tile solution and the right hand of the Forward-Backward heat equation.展开更多
In this work,by combining the multistep discretization in time and the Sinc quadrature rule for approximating the conditional mathematical expectations,we will propose new fully discrete multistep schemes called“Sinc...In this work,by combining the multistep discretization in time and the Sinc quadrature rule for approximating the conditional mathematical expectations,we will propose new fully discrete multistep schemes called“Sinc-multistep schemes”for forward backward stochastic differential equations(FBSDEs).The schemes avoid spatial interpolations and admit high order of convergence.The stability and the K-th order error estimates in time for the K-step Sinc multistep schemes are theoretically proved(1≤K≤6).This seems to be the first time for analyzing fully time-space discrete multistep schemes for FBSDEs.Numerical examples are also presented to demonstrate the effectiveness,stability,and high order of convergence of the proposed schemes.展开更多
This paper focuses on linear-quadratic(LQ)optimal control for a class of systems governed by first-order hyperbolic partial differential equations(PDEs).Different from most of the previous works,an approach of discret...This paper focuses on linear-quadratic(LQ)optimal control for a class of systems governed by first-order hyperbolic partial differential equations(PDEs).Different from most of the previous works,an approach of discretization-then-continuousization is proposed in this paper to cope with the infinite-dimensional nature of PDE systems.The contributions of this paper consist of the following aspects:(1)The differential Riccati equations and the solvability condition of the LQ optimal control problems are obtained via the discretization-then-continuousization method.(2)A numerical calculation way of the differential Riccati equations and a practical design way of the optimal controller are proposed.Meanwhile,the relationship between the optimal costate and the optimal state is established by solving a set of forward and backward partial difference equations(FBPDEs).(3)The correctness of the method used in this paper is verified by a complementary continuous method and the comparative analysis with the existing operator results is presented.It is shown that the proposed results not only contain the classic results of the standard LQ control problem of systems governed by ordinary differential equations as a special case,but also support the existing operator results and give a more convenient form of computation.展开更多
In this work,we propose an explicit second order scheme for decoupled mean-field forward backward stochastic differential equations with jumps.The sta-bility and the rigorous error estimates are presented,which show th...In this work,we propose an explicit second order scheme for decoupled mean-field forward backward stochastic differential equations with jumps.The sta-bility and the rigorous error estimates are presented,which show that the proposed scheme yields a second order rate of convergence,when the forward mean-field stochastic differential equation is solved by the weak order 2.0 Itˆo-Taylor scheme.Numerical experiments are carried out to verify the theoretical results.展开更多
This paper tries to make a comparison and connection between Fokker-Planck or forward Kolmogorov equation and psychological future time which is based on quantum mechanics. It will be showed that in quantum finance fo...This paper tries to make a comparison and connection between Fokker-Planck or forward Kolmogorov equation and psychological future time which is based on quantum mechanics. It will be showed that in quantum finance forward interest rate model can be further improved by noting that the predicted correlation structure for field theory models depends only on variable where t is present time and x is future time. On the other side, forward Kolmogorov equation is a parabolic partial differential equation, requiring international conditions at time t and to be solved for . The aforementioned equation is to be used if there are some special states now and it is necessary to know what can happen later. It will be tried to establish the connection between these two equations. It is proved that the psychological future time if applied and implemented in Fokker-Planck equation is unstable and is changeable so it is not easily predictable. Some kinds of nonlinear functions can be applied in order to establish the notion of psychological future time, however it is unstable and it should be continuously changed.展开更多
In this paper,by using trapezoidal rule and the integration-by-parts formula of Malliavin calculus,we propose three new numerical schemes for solving decoupled forward-backward stochastic differential equations.We the...In this paper,by using trapezoidal rule and the integration-by-parts formula of Malliavin calculus,we propose three new numerical schemes for solving decoupled forward-backward stochastic differential equations.We theoretically prove that the schemes have second-order convergence rate.To demonstrate the effectiveness and the second-order convergence rate,numerical tests are given.展开更多
We propose new numerical schemes for decoupled forward-backward stochastic differ- ential equations (FBSDEs) with jumps, where the stochastic dynamics are driven by a d- dimensional Brownian motion and an independen...We propose new numerical schemes for decoupled forward-backward stochastic differ- ential equations (FBSDEs) with jumps, where the stochastic dynamics are driven by a d- dimensional Brownian motion and an independent compensated Poisson random measure. A semi-discrete scheme is developed for discrete time approximation, which is constituted by a classic scheme for the forward SDE [20, 28] and a novel scheme for the backward SDE. Under some reasonable regularity conditions, we prove that the semi-discrete scheme can achieve second-order convergence in approximating the FBSDEs of interest; and such convergence rate does not require jump-adapted temporal discretization. Next, to add in spatial discretization, a fully discrete scheme is developed by designing accurate quadrature rules for estimating the involved conditional mathematical expectations. Several numerical examples are given to illustrate the effectiveness and the high accuracy of the proposed schemes.展开更多
In this paper we propose the finite difference method for the forward-backward heat equation. We use a coarse-mesh second-order central difference scheme at the middle line mesh points and derive the error estimate. T...In this paper we propose the finite difference method for the forward-backward heat equation. We use a coarse-mesh second-order central difference scheme at the middle line mesh points and derive the error estimate. Then we discuss the iterative method based on the domain decomposition for our scheme and derive the bounds for the rates of convergence. Finally we present some numerical experiments to support our analysis.展开更多
This is one of our series works on numerical methods for mean-field forward backward stochastic differential equations(MFBSDEs).In this work,we propose an explicit multistep scheme for MFBSDEs which is easy to impleme...This is one of our series works on numerical methods for mean-field forward backward stochastic differential equations(MFBSDEs).In this work,we propose an explicit multistep scheme for MFBSDEs which is easy to implement,and is of high order rate of convergence.Rigorous error estimates of the proposed multistep scheme are presented.Numerical experiments are carried out to show the efficiency and accuracy of the proposed scheme.展开更多
We introduce a new Euler-type scheme and its iterative algorithm for solving weakly coupled forward-backward stochastic differential equations (FBSDEs). Although the schemes share some common features with the ones ...We introduce a new Euler-type scheme and its iterative algorithm for solving weakly coupled forward-backward stochastic differential equations (FBSDEs). Although the schemes share some common features with the ones proposed by C. Bender and J. Zhang [Ann. Appl. Probab., 2008, 18: 143-177], less computational work is needed for our method. For both our schemes and the ones proposed by Bender and Zhang, we rigorously obtain first-order error estimates, which improve the half-order error estimates of Bender and Zhang. Moreover, numerical tests are given to demonstrate the first-order accuracy of the schemes.展开更多
文摘As for the backward and forward equation of nonhomogeneous(H, Q) -processes,we proof them in a new way. On the base of that, this paper gives the direct computational formalfor one dimensional distribution of the nonhomogeneous(H, Q) -process.
基金This work was supported by the National Natural Science Foundation of China (10001022 and 10371067)the Excellent Young Teachers Program and the Doctoral program Foundation of MOE and Shandong Province,P.R.C.
文摘The existence and uniqueness results of fully coupled forward-backward stochastic differential equations with stopping time (unbounded) is obtained. One kind of comparison theorem for this kind of equations is also proved.
基金supported by the National Natural Science Foundation of China (No. 10771122)the NaturalScience Foundation of Shandong Province of China (No. Y2006A08)the National Basic ResearchProgram of China (973 Program) (No. 2007CB814900)
文摘A general type of forward-backward doubly stochastic differential equations (FBDSDEs) is studied. It extends many important equations that have been well studied, including stochastic Hamiltonian systems. Under some much weaker monotonicity assumptions, the existence and uniqueness of measurable solutions are established with a incthod of continuation. Furthermore, the continuity and differentiability of the solutions to FBDSDEs depending on parameters is discussed.
文摘This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171238)
文摘This paper derives the fractional backward Kolmogorov equations in fractal space-time based on the construction of a model for dynamic trajectories. It shows that for the type of fractional backward Kolmogorov equation in the fractal time whose coefficient functions are independent of time, its solution is equal to the transfer probability density function of the subordinated process X(Sα (t)), the subordinator Sα (t) is termed as the inverse-time a-stable subordinator and the process X(τ) satisfies the corresponding time homogeneous Ito stochastic differential equation.
基金Supported by National Science Foundation of China(Grant 10871179)the National Basic Research Programme of China(Grant 2008CB717806)the Department of Education of Zhejiang Province(GrantY200803559).
文摘A finite difference method is introduced to solve the forward-backward heat equation in two space dimensions. In this procedure, the backward and forward difference scheme in two subdomains and a coarse-mesh second-order central difference scheme at the middle interface are used. Maximum norm error estimate for the procedure is derived. Then an iterative method based on domain decomposition is presented for the numerical scheme and the convergence of the given method is established. Then numerical experiments are presented to support the theoretical analysis.
文摘This paper is devoted to path-dependent kinetics equations arising, in particular, from the analysis of the coupled backward-forward systems of equations of mean field games. We present local well-posedness, global existence and some regularity results for these equations.
文摘In this paper,we propose a new numerical method which is a least squares approximaton based on pseudospectral method for the Forward-Backward heat equation. The existence and uniqueness of the solution of the least squares approximation are proved. Error estimates for this approximation are given,which show that tile order of convergence depends only on the regularity of tile solution and the right hand of the Forward-Backward heat equation.
基金This work was partially supported by the science challenge project(No.TZ2018001)the national natural science foundation of China(Nos.12071261,11831010 and 11871068)+1 种基金the national key basic research program(No.2018YFA0703900)The authors would like to thank the referees for the helpful comments on the improvement of the present paper.
文摘In this work,by combining the multistep discretization in time and the Sinc quadrature rule for approximating the conditional mathematical expectations,we will propose new fully discrete multistep schemes called“Sinc-multistep schemes”for forward backward stochastic differential equations(FBSDEs).The schemes avoid spatial interpolations and admit high order of convergence.The stability and the K-th order error estimates in time for the K-step Sinc multistep schemes are theoretically proved(1≤K≤6).This seems to be the first time for analyzing fully time-space discrete multistep schemes for FBSDEs.Numerical examples are also presented to demonstrate the effectiveness,stability,and high order of convergence of the proposed schemes.
基金supported by the National Natural Science Foundation of China under Grant Nos.61821004 and 62250056the Natural Science Foundation of Shandong Province under Grant Nos.ZR2021ZD14 and ZR2021JQ24+1 种基金Science and Technology Project of Qingdao West Coast New Area under Grant Nos.2019-32,2020-20,2020-1-4,High-level Talent Team Project of Qingdao West Coast New Area under Grant No.RCTDJC-2019-05Key Research and Development Program of Shandong Province under Grant No.2020CXGC01208.
文摘This paper focuses on linear-quadratic(LQ)optimal control for a class of systems governed by first-order hyperbolic partial differential equations(PDEs).Different from most of the previous works,an approach of discretization-then-continuousization is proposed in this paper to cope with the infinite-dimensional nature of PDE systems.The contributions of this paper consist of the following aspects:(1)The differential Riccati equations and the solvability condition of the LQ optimal control problems are obtained via the discretization-then-continuousization method.(2)A numerical calculation way of the differential Riccati equations and a practical design way of the optimal controller are proposed.Meanwhile,the relationship between the optimal costate and the optimal state is established by solving a set of forward and backward partial difference equations(FBPDEs).(3)The correctness of the method used in this paper is verified by a complementary continuous method and the comparative analysis with the existing operator results is presented.It is shown that the proposed results not only contain the classic results of the standard LQ control problem of systems governed by ordinary differential equations as a special case,but also support the existing operator results and give a more convenient form of computation.
基金supported by the NSF of China(Grant Nos.12071261,12001539,11801320,11831010,12371398)by the National Key R&D Program of China(Grant No.2018YFA0703900)+2 种基金by the NSF of Shandong Province(Grant No.ZR2023MA055)by the NSF of Hunan Province(Grant No.2020JJ5647)by the China Postdoctoral Science Foundation(Grant No.2019TQ0073).
文摘In this work,we propose an explicit second order scheme for decoupled mean-field forward backward stochastic differential equations with jumps.The sta-bility and the rigorous error estimates are presented,which show that the proposed scheme yields a second order rate of convergence,when the forward mean-field stochastic differential equation is solved by the weak order 2.0 Itˆo-Taylor scheme.Numerical experiments are carried out to verify the theoretical results.
文摘This paper tries to make a comparison and connection between Fokker-Planck or forward Kolmogorov equation and psychological future time which is based on quantum mechanics. It will be showed that in quantum finance forward interest rate model can be further improved by noting that the predicted correlation structure for field theory models depends only on variable where t is present time and x is future time. On the other side, forward Kolmogorov equation is a parabolic partial differential equation, requiring international conditions at time t and to be solved for . The aforementioned equation is to be used if there are some special states now and it is necessary to know what can happen later. It will be tried to establish the connection between these two equations. It is proved that the psychological future time if applied and implemented in Fokker-Planck equation is unstable and is changeable so it is not easily predictable. Some kinds of nonlinear functions can be applied in order to establish the notion of psychological future time, however it is unstable and it should be continuously changed.
基金supported by National Natural Science Foundation of China (Grant Nos. 91130003 and 11171189)Natural Science Foundation of Shandong Province (Grant No. ZR2011AZ002)
文摘In this paper,by using trapezoidal rule and the integration-by-parts formula of Malliavin calculus,we propose three new numerical schemes for solving decoupled forward-backward stochastic differential equations.We theoretically prove that the schemes have second-order convergence rate.To demonstrate the effectiveness and the second-order convergence rate,numerical tests are given.
基金The authors would like to thank the referees for their valuable comments, which improved much of the quality of the paper. This work is partially support- ed by the National Natural Science Foundations of China under grant numbers 91130003,11171189 and 11571206 by Natural Science Foundation of Shandong Province under grant number ZR2011AZ002+1 种基金 by the U.S. Department of Energy, Office of Science, Office of Ad- vanced Scientific Computing Research, Applied Mathematics program under contract number ERKJE45 and by the Laboratory Directed Research and Development program at the Oak Ridge National Laboratory, which is operated by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725.
文摘We propose new numerical schemes for decoupled forward-backward stochastic differ- ential equations (FBSDEs) with jumps, where the stochastic dynamics are driven by a d- dimensional Brownian motion and an independent compensated Poisson random measure. A semi-discrete scheme is developed for discrete time approximation, which is constituted by a classic scheme for the forward SDE [20, 28] and a novel scheme for the backward SDE. Under some reasonable regularity conditions, we prove that the semi-discrete scheme can achieve second-order convergence in approximating the FBSDEs of interest; and such convergence rate does not require jump-adapted temporal discretization. Next, to add in spatial discretization, a fully discrete scheme is developed by designing accurate quadrature rules for estimating the involved conditional mathematical expectations. Several numerical examples are given to illustrate the effectiveness and the high accuracy of the proposed schemes.
基金The project was supported by National Science Foundation (Grant No. 10471129).
文摘In this paper we propose the finite difference method for the forward-backward heat equation. We use a coarse-mesh second-order central difference scheme at the middle line mesh points and derive the error estimate. Then we discuss the iterative method based on the domain decomposition for our scheme and derive the bounds for the rates of convergence. Finally we present some numerical experiments to support our analysis.
基金supported by the national key basic research program(Nos.2018YFB0704304,2018YFA0703900)Science Challenge Project(No.TZ2018001)+3 种基金NSF of China(Nos.11831010,11871068,11822111,11688101,11801320,12071261,12001539)Natural Science Foundation of Shandong Province(No.ZR2018BA005)NSF of Hunan Province(No.2020JJ5647)China Postdoctoral Science Foundation(No.2019TQ0073).
文摘This is one of our series works on numerical methods for mean-field forward backward stochastic differential equations(MFBSDEs).In this work,we propose an explicit multistep scheme for MFBSDEs which is easy to implement,and is of high order rate of convergence.Rigorous error estimates of the proposed multistep scheme are presented.Numerical experiments are carried out to show the efficiency and accuracy of the proposed scheme.
基金Acknowledgements The authors would like to thank the referees for the valuable comments, which improved the paper a lot. This work was partially supported by the National Natural Science Foundations of China (Grant Nos. 91130003, 11171189) and the Natural Science Foundation of Shandong Province (No. ZR2011AZ002).
文摘We introduce a new Euler-type scheme and its iterative algorithm for solving weakly coupled forward-backward stochastic differential equations (FBSDEs). Although the schemes share some common features with the ones proposed by C. Bender and J. Zhang [Ann. Appl. Probab., 2008, 18: 143-177], less computational work is needed for our method. For both our schemes and the ones proposed by Bender and Zhang, we rigorously obtain first-order error estimates, which improve the half-order error estimates of Bender and Zhang. Moreover, numerical tests are given to demonstrate the first-order accuracy of the schemes.