Let A and B be algebras, and let T be the dual extension algebra of A and B. We provide a different method to prove that T is Koszul if and only if both A and B are Koszul. Furthermore, we prove that an algebra is Kos...Let A and B be algebras, and let T be the dual extension algebra of A and B. We provide a different method to prove that T is Koszul if and only if both A and B are Koszul. Furthermore, we prove that an algebra is Koszul if and only if one of its iterated dual extension algebras is Koszul, if and only if all its iterated dual extension algebras are Koszul. Finally, we give a necessary and sufficient condition for a dual extension algebra to have the property that all linearly presented modules are Koszul modules, which provides an effective way to construct algebras with such a property.展开更多
Let A be a path A∞-algebra over a positively graded quiver Q. We prove that the derived category of A is triangulated equivalent to the derived category of kQ, which is viewed as a DG algebra with trivial differentia...Let A be a path A∞-algebra over a positively graded quiver Q. We prove that the derived category of A is triangulated equivalent to the derived category of kQ, which is viewed as a DG algebra with trivial differential. The main technique used in the proof is Koszul duality for DG algebras.展开更多
基金The first author is and encouragement. The authors thank grateful to Professor Yu Ye for helpful discussion the anonymous referees for their very helpful suggestions to improve this paper. This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11571341, 11371186).
文摘Let A and B be algebras, and let T be the dual extension algebra of A and B. We provide a different method to prove that T is Koszul if and only if both A and B are Koszul. Furthermore, we prove that an algebra is Koszul if and only if one of its iterated dual extension algebras is Koszul, if and only if all its iterated dual extension algebras are Koszul. Finally, we give a necessary and sufficient condition for a dual extension algebra to have the property that all linearly presented modules are Koszul modules, which provides an effective way to construct algebras with such a property.
文摘Let A be a path A∞-algebra over a positively graded quiver Q. We prove that the derived category of A is triangulated equivalent to the derived category of kQ, which is viewed as a DG algebra with trivial differential. The main technique used in the proof is Koszul duality for DG algebras.