期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Critical Exercise Price for American Floating Strike Lookback Option in a Mixed Jump-Diffusion Model 被引量:4
1
作者 YANG Zhao-qiang 《Chinese Quarterly Journal of Mathematics》 2018年第3期240-259,共20页
This paper studies the critical exercise price of American floating strike lookback options under the mixed jump-diffusion model. By using It formula and Wick-It-Skorohod integral, a new market pricing model estab... This paper studies the critical exercise price of American floating strike lookback options under the mixed jump-diffusion model. By using It formula and Wick-It-Skorohod integral, a new market pricing model established under the environment of mixed jumpdiffusion fractional Brownian motion. The fundamental solutions of stochastic parabolic partial differential equations are estimated under the condition of Merton assumptions. The explicit integral representation of early exercise premium and the critical exercise price are also given, then the American floating strike lookback options factorization formula is obtained, the results is generalized the classical Black-Scholes market pricing model. 展开更多
关键词 MIXED jump-diffusion fractional BROWNIAN motion Wick-Ito-Skorohod integral market pricing model option factorization CRITICAL exercise price
下载PDF
Pricing Discrete Barrier Options Under the Jump-Diffusion Model with Stochastic Volatility and Stochastic Intensity
2
作者 Pingtao Duan Yuting Liu Zhiming Ma 《Communications in Mathematics and Statistics》 SCIE 2024年第2期239-263,共25页
This paper considers the problem of numerically evaluating discrete barrier option prices when the underlying asset follows the jump-diffusion model with stochas-tic volatility and stochastic intensity.We derive the t... This paper considers the problem of numerically evaluating discrete barrier option prices when the underlying asset follows the jump-diffusion model with stochas-tic volatility and stochastic intensity.We derive the three-dimensional characteristic function of the log-asset price,the volatility and the jump intensity.We also provide the approximate formula of the discrete barrier option prices by the three-dimensional Fourier cosine series expansion(3D-COS)method.Numerical results show that the 3D-COS method is rather correct,fast and competent for pricing the discrete barrier options. 展开更多
关键词 option pricing Discrete barrier options jump-diffusion model Stochastic volatility Stochastic intensity
原文传递
On the Convergence of a Crank-Nicolson Fitted Finite Volume Method for Pricing European Options under Regime-Switching Kou’s Jump-Diffusion Models
3
作者 Xiaoting Gan Junfeng Yin Rui Li 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第5期1290-1314,共25页
In this paper,we construct and analyze a Crank-Nicolson fitted finite volume scheme for pricing European options under regime-switching Kou’s jumpdiffusion model which is governed by a system of partial integro-diffe... In this paper,we construct and analyze a Crank-Nicolson fitted finite volume scheme for pricing European options under regime-switching Kou’s jumpdiffusion model which is governed by a system of partial integro-differential equations(PIDEs).We show that this scheme is consistent,stable and monotone as the mesh sizes in space and time approach zero,hence it ensures the convergence to the solution of continuous problem.Finally,numerical experiments are performed to demonstrate the efficiency,accuracy and robustness of the proposed method. 展开更多
关键词 European option pricing regime-switching kou’s jump-diffusion model partial integro-differential equation fitted finite volume method Crank-Nicolson scheme
原文传递
美式Kou型跳扩散期权模型的Crank-Nicolson拟合有限体积法
4
作者 江忠东 甘小艇 《吉林大学学报(理学版)》 CAS 北大核心 2022年第3期531-542,共12页
首先,考虑一种求解美式Kou型跳扩散期权模型的Crank-Nicolson拟合有限体积方法,并给出收敛性分析;其次,针对非线性代数系统设计一个迭代算法,并证明其收敛性;最后,用数值实验验证了新方法的收敛性、稳健性和有效性.
关键词 美式kou型跳扩散期权 Crank-Nicolson拟合有限体积法 收敛性分析
下载PDF
有限体积法定价跳扩散期权模型 被引量:7
5
作者 甘小艇 殷俊锋 李蕊 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第9期1458-1465,共8页
考虑有限体积法求解Kou模型下美式跳扩散期权.基于线性有限元空间,构造了向后欧拉和Crank-Nicolson两种全离散有限体积格式,并采用简单高效的递推公式对偏微分积分方程中的积分项进行逼近.针对美式期权离散得到的线性互补问题(LCP),采... 考虑有限体积法求解Kou模型下美式跳扩散期权.基于线性有限元空间,构造了向后欧拉和Crank-Nicolson两种全离散有限体积格式,并采用简单高效的递推公式对偏微分积分方程中的积分项进行逼近.针对美式期权离散得到的线性互补问题(LCP),采用模超松弛迭代法(MSOR)进行求解,并证明了H_+离散矩阵下算法的收敛性.数值实验表明,所构造的方法是高效而稳健的. 展开更多
关键词 有限体积法 kou跳扩散期权模型 线性互补问题 模超松弛迭代法
下载PDF
A POISSON-GAUSSIAN MODEL TO PRICE EUROPEAN OPTIONS ON THE EXTREMUM OF SEVERAL RISKY ASSETS WITHIN THE HJM FRAMEWORK
6
作者 Guohe DENG Lihong HUANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2010年第4期769-783,共15页
This paper generalizes European call options on the extremum of several risky assets in a Poisson-Gaussian model which allows both the risky assets and stochastic interest rates moving randomly with jump risks. The st... This paper generalizes European call options on the extremum of several risky assets in a Poisson-Gaussian model which allows both the risky assets and stochastic interest rates moving randomly with jump risks. The stochastic interest rate is assumed to follow an extended multi-factor HJM model with jumps. The authors provide explicitly the closed-form solutions of these options through the change of numeralre technique and examine the effects of both jump risks and stochastic interest rate on the option price with numerical experiment. The model can be seen as an extension of Stulz (1982), Johnson (1987) and Lindset (2006). 展开更多
关键词 Extremum options jump-diffusion model stochastic interest rate.
原文传递
定价Kou跳扩散美式期权模型的一种有效算法
7
作者 豆铨煜 王励冰 刘梅 《数学的实践与认识》 北大核心 2024年第10期231-236,共6页
针对Kou跳扩散模型美式期权定价问题,空间方向采用中心差分格式离散,时间方向采用Rannacher格式离散,并利用简单有效的递推公式近似积分项.采用模超松弛迭代法求解美式期权离散得到的线性互补问题,分析了离散矩阵的性质和算法的收敛条件... 针对Kou跳扩散模型美式期权定价问题,空间方向采用中心差分格式离散,时间方向采用Rannacher格式离散,并利用简单有效的递推公式近似积分项.采用模超松弛迭代法求解美式期权离散得到的线性互补问题,分析了离散矩阵的性质和算法的收敛条件.数值实验验证了理论分析并表明所构造的方法是有效稳健的. 展开更多
关键词 kou跳扩散模型 美式期权 线性互补问题 模超松弛迭代法
原文传递
Pricing vulnerable European options with dynamic correlation between market risk and credit risk 被引量:2
8
作者 Huawei Niu Yu Xing Yonggan Zhao 《Journal of Management Science and Engineering》 2020年第2期125-145,共21页
In this paper,we study the valuation of vulnerable European options incorporating the reduced-form approach,which models the credit default of the counterparty.We provide an analytical pricing model in which the compo... In this paper,we study the valuation of vulnerable European options incorporating the reduced-form approach,which models the credit default of the counterparty.We provide an analytical pricing model in which the components of the state processes,including the dynamics of the underlying asset value and the intensity process corresponding to the default event,are cross-exciting and they could facilitate the description of complex structure of events dependence.To illustrate how our model works,we present an application when the state variables follow specific affine jump-diffusion processes.Semi-analytical pricing formulae are obtained through a system of matrix Riccati equations.The derived formula can be implemented numerically,and we give numerical analysis to investigate the impact of the dynamic correlation between jump risk of the underlying asset value and default risk of the counterparty. 展开更多
关键词 Vulnerable options Reduced-form model Credit risk Fourier transform Affine jump-diffusion
原文传递
CVaR-hedging and its applications to equity-linked life insurance contracts with transaction costs
9
作者 Alexander Melnikov Hongxi Wan 《Probability, Uncertainty and Quantitative Risk》 2021年第4期343-368,共26页
This paper analyzes Conditional Value-at-Risk(CVaR)based partial hedging and its applications on equity-linked life insurance contracts in a Jump-Diffusion market model with transaction costs.A nonlinear partial diffe... This paper analyzes Conditional Value-at-Risk(CVaR)based partial hedging and its applications on equity-linked life insurance contracts in a Jump-Diffusion market model with transaction costs.A nonlinear partial differential equation(PDE)that an option value process inclusive of transaction costs should satisfy is provided.In particular,the closed-form expression of a European call option price is given.Meanwhile,the CVaR-based partial hedging strategy for a call option is derived explicitly.Both the CVaR hedging price and the weights of the hedging portfolio are based on an adjusted volatility.We obtain estimated values of expected total hedging errors and total transaction costs by a simulation method.Furthermore,our results are implemented to derive target clients’survival probabilities and age of equity-linked life insurance contracts. 展开更多
关键词 Conditional Value-at-Risk jump-diffusion model option pricing Transaction costs Equity-linked life insurance contracts
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部