In this paper, we present a generalization of the commonly used growth models. We introduce Koya-Goshu biological growth model, as a more general solution of the rate-state ordinary differential equation. It is shown ...In this paper, we present a generalization of the commonly used growth models. We introduce Koya-Goshu biological growth model, as a more general solution of the rate-state ordinary differential equation. It is shown that the commonly used growth models such as Brody, Von Bertalanffy, Richards, Weibull, Monomolecular, Mitscherlich, Gompertz, Logistic, and generalized Logistic functions are its special cases. We have constructed growth and relative growth functions as solutions of the rate-state equation. The generalized growth function is the most flexible so that it can be useful in model selection problems. It is also capable of generating new useful models that have never been used so far. The function incorporates two parameters with one influencing growth pattern and the other influencing asymptotic behaviors. The relationships among these growth models are studies in details and provided in a flow chart.展开更多
In this paper, some theoretical mathematical aspects of the known predator-prey problem are considered by relaxing the assumptions that interaction of a predation leads to little or no effect on growth of the prey pop...In this paper, some theoretical mathematical aspects of the known predator-prey problem are considered by relaxing the assumptions that interaction of a predation leads to little or no effect on growth of the prey population and the prey growth rate parameter is a positive valued function of time. The predator growth model is derived considering that the prey follows a known growth models viz., Logistic and Von Bertalanffy. The result shows that the predator’s population growth models look to be new functions. For either models, the predator population size either converges to a finite positive limit or to 0 or diverges to +∞. It is shown algebraically and illustrated pictorially that there is a condition at which the predator-prey population models both converge to the same finite limit. Derivations and simulation studies are provided in the paper. Analysis of equilibrium points and stability is also included.展开更多
文摘In this paper, we present a generalization of the commonly used growth models. We introduce Koya-Goshu biological growth model, as a more general solution of the rate-state ordinary differential equation. It is shown that the commonly used growth models such as Brody, Von Bertalanffy, Richards, Weibull, Monomolecular, Mitscherlich, Gompertz, Logistic, and generalized Logistic functions are its special cases. We have constructed growth and relative growth functions as solutions of the rate-state equation. The generalized growth function is the most flexible so that it can be useful in model selection problems. It is also capable of generating new useful models that have never been used so far. The function incorporates two parameters with one influencing growth pattern and the other influencing asymptotic behaviors. The relationships among these growth models are studies in details and provided in a flow chart.
文摘In this paper, some theoretical mathematical aspects of the known predator-prey problem are considered by relaxing the assumptions that interaction of a predation leads to little or no effect on growth of the prey population and the prey growth rate parameter is a positive valued function of time. The predator growth model is derived considering that the prey follows a known growth models viz., Logistic and Von Bertalanffy. The result shows that the predator’s population growth models look to be new functions. For either models, the predator population size either converges to a finite positive limit or to 0 or diverges to +∞. It is shown algebraically and illustrated pictorially that there is a condition at which the predator-prey population models both converge to the same finite limit. Derivations and simulation studies are provided in the paper. Analysis of equilibrium points and stability is also included.