期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preparation and Unimolecular-Micellization Behavior of Homopolymer of Surface-Active Monomer AMC14AB
1
作者 Kang-kai Liu Lei Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2008年第5期469-475,共7页
(2-acrylamido) ethyl tetradecyl dimethylammonium bromide (AMC14AB) was polymerized in aqueous solu- tion to form the homopolymer P(AMC14AB). The physicochemical properties of P(AMC14AB) in aqueous solution wer... (2-acrylamido) ethyl tetradecyl dimethylammonium bromide (AMC14AB) was polymerized in aqueous solu- tion to form the homopolymer P(AMC14AB). The physicochemical properties of P(AMC14AB) in aqueous solution were mainly studied with fluorescent probe method, surface tension measurement and conductom- etry. The experimental results show that the aggregation morphology of P(AMC14AB) in aqueous solution is unimolecular micelle as expected. Being different from conventional multimolecular micelle systems, the unimolecular micelle system of P(AMC14AB) not only shows critical micellar concentration (CMC=0), (i.e. once added to pure water, the surface tension decreases immediately in spite how small the density is), but also the surface tension stays almost the same with the concentration increasing. That is to say, there is no mutational point on the relationship curve between surface tension and concentration. Furthermore, the unimolecular micelle system of P(AMC14AB) has no Krafft temperature, i.e. at any temperature, so long as it is dissolved in water, the unimolecular micelles will form. Besides this, for the solubilization of hydrophobic organic substances, the unimolecular micelle system of P(AMC14AB) is obviously different from the common multimolecular micelle system, having no turning point on the relationship curve between toluene solubi- lizaion amount and P(AMC14AB) concentration, and the solubilizing ability of the unimolecular-micelle system of P(AMC14AB) for hydrophobic organic substances is much higher than that of the conventional multimolecular micelle solutions of common surfactants, such as centyl trimethyl ammonium bromide. 展开更多
关键词 Surface active monomer Unimolecular micelle Zero critical micellar concentration krafft temperature
下载PDF
Effect of Penicillin G Potassium Salt on the Physicochemical Properties of SDS Aqueous Solution and the Release of the Salt in SDS/n-CsH11OH/H2O System
2
作者 钱俊红 陆义英 郭荣 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2006年第1期22-28,共7页
The effects of penicillin potassium salt (PenK) on the solubility, Krafft temperature TK, critical micelle concentration CMC of SDS micelle and the phase behavior of SDS/n-C5H11OH/H2O system were studied. The partia... The effects of penicillin potassium salt (PenK) on the solubility, Krafft temperature TK, critical micelle concentration CMC of SDS micelle and the phase behavior of SDS/n-C5H11OH/H2O system were studied. The partial phase diagrams of SDS/PenK/H2O system at different temperatures were determined. The release amounts of PenK in SDS/n-C5H11OH/H2O system and the distribution coefficient of PenK between micelle and water were measured by UV-Vis spectroscopy. The results show that in the presence of PenK, the CMC of SDS was decreased while the TK of SDS was increased and the solubility of SDS in both water and SDS/n-C5H11OH/H2O oil in water (O/W) microemulsion was decreased, but increased in water in oil (W/O) microemulsion. SDS micelles and SDS/n- C5H11OH/H20 O/W microemulsion could accelerate the release rate of PenK. The addition of SDS and water could both increase the release rate of PenK, whereas the presence of n-C5H11OH reduced the release rate of PenK. The above results were related to the electrostatic repulsion between PenK and SDS. 展开更多
关键词 penicillin G potassium salt sodium dodecylsulfate krafft temperature critical micelle concentration solubility RELEASE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部