期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
基于Kriging函数的KVPMCD在滚动轴承故障诊断中的应用 被引量:3
1
作者 杨宇 潘海洋 +1 位作者 李杰 程军圣 《中国机械工程》 EI CAS CSCD 北大核心 2014年第16期2131-2136,共6页
滚动轴承的故障诊断本质上是模式识别的问题,多变量预测模型(VPMCD)是一种新的模式识别方法,其实质就是通过特征值之间的相互内在关系建立数学模型,并根据数学模型对被诊断轴承的特征值进行预测从而达到模式识别的目的。但是VPMCD分类... 滚动轴承的故障诊断本质上是模式识别的问题,多变量预测模型(VPMCD)是一种新的模式识别方法,其实质就是通过特征值之间的相互内在关系建立数学模型,并根据数学模型对被诊断轴承的特征值进行预测从而达到模式识别的目的。但是VPMCD分类方法中单纯采用回归模型进行预测,因此当故障特征值之间关系较为复杂时将导致预测精度降低。针对这一缺陷,提出了基于Kriging函数的多变量预测模型(KVPMCD)模式识别方法。Kriging模型由回归模型和相关模型组合而成,其中,相关模型是在全局模型的基础上创建的局部偏差,它恰恰可以揭示特征值之间的空间相关性,从而弥补原VPMCD中单纯采用回归模型的缺点。对UCI标准数据以及滚动轴承实测数据的分析结果表明,KVPMCD模式识别方法比原VPMCD方法可以更加有效地识别滚动轴承的工作状态和故障类型。 展开更多
关键词 kriging模型 kvpmcd 滚动轴承 故障诊断
下载PDF
基于ASTFA降噪和AKVPMCD的滚动轴承故障诊断方法 被引量:4
2
作者 杨宇 李紫珠 +1 位作者 何知义 程军圣 《中国机械工程》 EI CAS CSCD 北大核心 2015年第21期2934-2940,共7页
提出了一种滚动轴承故障诊断的新方法。首次将自适应最稀疏时频分析(ASTFA)方法应用于振动信号的降噪,并针对KVPMCD方法只选择一种最佳相关模型而忽略其他几种相关模型对预测精度贡献的缺陷,提出了一种改进的KVPMCD模式识别算法——人... 提出了一种滚动轴承故障诊断的新方法。首次将自适应最稀疏时频分析(ASTFA)方法应用于振动信号的降噪,并针对KVPMCD方法只选择一种最佳相关模型而忽略其他几种相关模型对预测精度贡献的缺陷,提出了一种改进的KVPMCD模式识别算法——人工鱼群算法优化融合Kriging模型的基于变量预测模型的模式识别(AKVPMCD)算法,即采用收敛速度快、鲁棒性强、具有全局寻优能力的人工鱼群智能算法(AFSIA)优化融合多种Kriging相关模型来提高模型预测精度。在此基础上,提出了一种基于ASTFA降噪和AKVPMCD算法的滚动轴承故障诊断方法。实验结果表明,该方法可以有效提高分类识别的精度。 展开更多
关键词 自适应最稀疏时频分析降噪 Akvpmcd 滚动轴承 故障诊断
下载PDF
基于流形学习和改进VPMCD的滚动轴承故障诊断方法 被引量:6
3
作者 潘海洋 杨宇 +1 位作者 李永国 程军圣 《振动工程学报》 EI CSCD 北大核心 2014年第6期934-941,共8页
提出一种基于拉普拉斯特征映射流形学习算法(Laplacian Eigenmaps,简称LE)和改进多变量预测模型(Variable predictive model based class discriminate,简称VPMCD)的滚动轴承故障诊断方法,首先对振动信号进行局部特征尺度分解(Local cha... 提出一种基于拉普拉斯特征映射流形学习算法(Laplacian Eigenmaps,简称LE)和改进多变量预测模型(Variable predictive model based class discriminate,简称VPMCD)的滚动轴承故障诊断方法,首先对振动信号进行局部特征尺度分解(Local characteristic scale decomposition,简称LCD),并提取各内禀尺度分量(Intrinsic scale component,简称ISC)的特征构造高维特征向量,接着采用LE算法挖掘出高维数据中包含有效信息且具有内在规律性的低维特征,然后输入到基于Kriging的改进多变量预测模型(Kriging-variable predictive model based class discriminate,简称KVPMCD)分类器中进行模式识别。该方法充分利用并有效结合了LCD在信号处理、LE在挖掘特征信息和KVPMCD在模式识别方面的优势,实现了滚动轴承故障特征提取到故障识别的全程诊断。实验分析结果表明:基于LE算法和KVPMCD的分类方法可以有效地对滚动轴承的工作状态和故障类型进行识别。 展开更多
关键词 故障诊断 滚动轴承 LE kvpmcd
下载PDF
基于VPMELM的滚动轴承劣化状态辨识方法 被引量:8
4
作者 郑近德 潘海洋 +1 位作者 童宝宏 张良安 《振动与冲击》 EI CSCD 北大核心 2017年第7期57-61,共5页
针对变量预测模型模式识别方法(VPMCD)仅仅包含几种简单数学模型的问题,所建立的预测模型不足以反映特征值之间的复杂关系;极限学习机(ELM)回归模型是一种复杂且被广泛应用的模型,其模型可以反映特征之间的相互关系。结合极限学习机回... 针对变量预测模型模式识别方法(VPMCD)仅仅包含几种简单数学模型的问题,所建立的预测模型不足以反映特征值之间的复杂关系;极限学习机(ELM)回归模型是一种复杂且被广泛应用的模型,其模型可以反映特征之间的相互关系。结合极限学习机回归模型和VPMCD方法的优点,提出了一种基于极限学习机的变量预测模型(VPMELM)模式识别方法,并将该方法应用于滚动轴承劣化状态实验中。实验表明,基于VPMELM的辨识方法可以有效地对滚动轴承的劣化状态进行识别。 展开更多
关键词 极限学习机 变量预测模式识别方法 基于极限学习机的变量预测模型 滚动轴承
下载PDF
基于LCD降噪和VPMCD的滚动轴承故障诊断方法 被引量:12
5
作者 杨宇 潘海洋 程军圣 《中国机械工程》 EI CAS CSCD 北大核心 2013年第24期3338-3344,共7页
提出了一种基于局部特征尺度分解(LCD)降噪和多变量预测模型(VPMCD)的滚动轴承故障诊断方法。该方法首先采用LCD对滚动轴承振动信号进行降噪;然后计算降噪后信号在不同维数下的模糊熵,并以模糊熵为特征值,采用VPMCD方法建立模糊熵的预... 提出了一种基于局部特征尺度分解(LCD)降噪和多变量预测模型(VPMCD)的滚动轴承故障诊断方法。该方法首先采用LCD对滚动轴承振动信号进行降噪;然后计算降噪后信号在不同维数下的模糊熵,并以模糊熵为特征值,采用VPMCD方法建立模糊熵的预测模型;最后用所建立的模型来预测待分类样本的特征值,把预测结果作为分类依据进行模式识别。实验分析结果表明,采用LCD方法降噪可以有效地提高VPMCD的分类性能,与神经网络、支持向量机等分类器相比,VPMCD方法可以更准确、更有效地识别滚动轴承的工作状态和故障类型。 展开更多
关键词 LCD降噪 多变量预测模型 滚动轴承 故障诊断
下载PDF
基于EEMD和改进VPMCD的滚动轴承故障诊断方法 被引量:5
6
作者 程军圣 马利 +1 位作者 潘海洋 杨宇 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第10期22-26,共5页
针对原VPMCD方法在参数估计过程中存在的缺陷,用BP神经网络非线性回归方法代替原方法中的最小二乘法,解决了最小二乘法中存在的病态问题,因此,提出了改进多变量预测模型(Variable predictive mode based class discriminate,简称VPMCD)... 针对原VPMCD方法在参数估计过程中存在的缺陷,用BP神经网络非线性回归方法代替原方法中的最小二乘法,解决了最小二乘法中存在的病态问题,因此,提出了改进多变量预测模型(Variable predictive mode based class discriminate,简称VPMCD)的滚动轴承故障诊断方法.首先采用总体经验模态分解(Ensemble empirical mode decomposition,简称EEMD)方法对滚动轴承振动信号进行分解得到若干个单分量信号,然后提取各分量奇异值组成特征向量作为改进VPMCD的输入,最后对滚动轴承工作状态和故障类型进行识别.实验结果表明,该方法能够有效地应用于滚动轴承故障诊断. 展开更多
关键词 改进VPMCD EEMD方法 奇异值分解 滚动轴承 故障诊断
下载PDF
VPMCD和模糊熵在转子系统故障诊断中的应用 被引量:5
7
作者 杨宇 潘海洋 程军圣 《振动.测试与诊断》 EI CSCD 北大核心 2014年第5期791-795,970,共5页
针对转子系统的故障特征,提出了基于多变量预测模型(variable predictive mode based class discriminate,简称VPMCD)和模糊熵的故障诊断方法。VPMCD方法是根据所提取的全部或部分特征值之间具有的某种内在关系建立预测模型,并以建立的... 针对转子系统的故障特征,提出了基于多变量预测模型(variable predictive mode based class discriminate,简称VPMCD)和模糊熵的故障诊断方法。VPMCD方法是根据所提取的全部或部分特征值之间具有的某种内在关系建立预测模型,并以建立的变量预测模型进行模式识别。首先,对转子振动信号进行经验模态分解(empirical mode decomposition,简称EMD),得到若干个内禀模态函数(intrinsic mode function,简称IMF)分量;接着,提取包含主要故障信息的前几个IMF分量的模糊熵组成故障特征向量矩阵;然后,采用VPMCD方法建立预测模型;最后,通过建立的VPMCD预测模型区分转子的工作状态和故障类型。实验分析结果表明,基于VPMCD和模糊熵的故障诊断方法可以准确、有效地识别转子系统的工作状态和故障类型。 展开更多
关键词 多变量预测模型 模糊熵 转子系统 故障诊断 @@
下载PDF
基于特征选择和RRVPMCD的滚动轴承故障诊断方法 被引量:6
8
作者 杨宇 潘海洋 程军圣 《振动工程学报》 EI CSCD 北大核心 2014年第4期629-636,共8页
针对滚动轴承故障诊断时所提取的特征值中可能含有较小相关性和冗余性特征,采用基于Wrapper模式的距离评价技术(distance evaluation technique,简称DET)进行特征选择。在分类器的设计中,提出了基于稳健回归的多变量预测模型(Robust reg... 针对滚动轴承故障诊断时所提取的特征值中可能含有较小相关性和冗余性特征,采用基于Wrapper模式的距离评价技术(distance evaluation technique,简称DET)进行特征选择。在分类器的设计中,提出了基于稳健回归的多变量预测模型(Robust regression-Variable predictive model based class discriminate,简称RRVPMCD)分类方法,以减小"异常值"对参数估计的影响,从而有望建立更加准确的预测模型。即根据Wrapper模式的特点,首先通过DET方法计算出各特征值对类的敏感度,并结合RRVPMCD分类器,选择敏感度最大的若干特征值组成特征向量矩阵;然后用RRVPMCD方法进行训练,建立预测模型;最后用所建立的预测模型进行模式识别。实验分析结果表明,基于Wrapper模式的特征选择方法和RRVPMCD分类方法相结合可以有效地对滚动轴承的工作状态和故障类型进行识别。 展开更多
关键词 故障诊断 滚动轴承 Wrapper模式 特征选择 RRVPMCD
下载PDF
一种增量式半监督VPMCD齿轮故障在线诊断方法 被引量:4
9
作者 杨宇 潘海洋 +1 位作者 李永国 程军圣 《振动与冲击》 EI CSCD 北大核心 2015年第8期49-54,共6页
针对齿轮故障诊断中难以获得大量故障样本的问题及实时在线诊断的需求,提出了一种基于增量式半监督多变量预测模型(Incremental Semi-supervised Variable Predictive Model based Class Discriminate,ISVPMCD)的齿轮故障在线检测方法... 针对齿轮故障诊断中难以获得大量故障样本的问题及实时在线诊断的需求,提出了一种基于增量式半监督多变量预测模型(Incremental Semi-supervised Variable Predictive Model based Class Discriminate,ISVPMCD)的齿轮故障在线检测方法。首先使用VPMCD方法给少量的已知样本建立初始预测模型,接着利用VPMCD方法中的判据给未标识样本赋予初始伪标识,然后通过互相关准则筛选出伪标识样本,最后利用伪标识样本和已知样本作为训练样本更新初始预测模型,使得更新的预测模型能兼顾整个样本集的信息,从而可以有效地解决小样本的故障诊断问题,另外,由于该方法在实时更新新样本的过程中不需要再次建立判别模型,从而缩短了分类时间,为实时在线诊断提供了新的思路。对UCI标准数据以及齿轮实测数据的分析结果表明,适合于小样本的ISVPMCD模式识别方法可以更快更准确地识别齿轮工作状态和故障类型。 展开更多
关键词 ISVPMCD 增量式 半监督 齿轮故障诊断
下载PDF
基于LPP与VPMCD的液压泵故障模式识别 被引量:2
10
作者 王余奎 李洪儒 许葆华 《中国机械工程》 EI CAS CSCD 北大核心 2015年第24期3327-3335,共9页
针对液压泵振动信号复杂且难以提取有效特征量的问题,提出一种基于局部保留投影(LPP)算法的故障特征提取方法。采用集总经验模态分解(EEMD)法对液压泵振动信号进行分解,从得到的内禀模态分量(IMF)中选取敏感分量,对敏感分量进行分析并... 针对液压泵振动信号复杂且难以提取有效特征量的问题,提出一种基于局部保留投影(LPP)算法的故障特征提取方法。采用集总经验模态分解(EEMD)法对液压泵振动信号进行分解,从得到的内禀模态分量(IMF)中选取敏感分量,对敏感分量进行分析并从中提取液压泵故障高维特征向量,利用局部保留投影法对高维特征向量进行融合降维,提取隐藏在高维特征空间中的故障本质信息,即敏感特征向量。基于变量预测模型的模式识别(VPMCD)算法实现模式识别的良好性能,提出采用VPMCD算法实现液压泵故障模式识别。基于提取的敏感特征集,建立各状态敏感特征的变量预测模型,进而实现液压泵的故障识别,实测液压泵振动信号分析结果验证了所提出液压泵故障模式识别方法的有效性。通过对比分析验证了所提出方法的良好性能。 展开更多
关键词 液压泵 故障模式识别 局部保留投影法 基于变量预测模型的模式识别
下载PDF
基于完备总体经验模态分解和模糊熵结合的液压泵退化特征提取方法 被引量:5
11
作者 姜万录 孔德田 +2 位作者 李振宝 佟祥伟 岳文德 《计量学报》 CSCD 北大核心 2020年第2期202-209,共8页
针对液压泵振动信号具有非线性、非平稳性,以及信噪比低等特点,提出了基于完备总体经验模态分解和模糊熵结合的液压泵性能退化特征提取方法。首先,使用完备总体经验模态分解方法对液压泵振动信号进行分解,得到若干个固有模态函数分量。... 针对液压泵振动信号具有非线性、非平稳性,以及信噪比低等特点,提出了基于完备总体经验模态分解和模糊熵结合的液压泵性能退化特征提取方法。首先,使用完备总体经验模态分解方法对液压泵振动信号进行分解,得到若干个固有模态函数分量。其次,求取各个分量与原始信号的相关性,选取相关性较高的前几个分量作为有效分量并求其模糊熵,实现液压泵的退化特征提取,形成特征向量。最后,以液压泵不同退化状态下的实测数据为例,使用基于变量预测模型的模式识别方法对提取的特征向量进行验证。实验结果表明,该液压泵退化特征提取方法具有较高的精度,使退化状态识别的准确率提高到了100%。 展开更多
关键词 计量学 液压泵 状态识别 完备总体经验模态分解 模糊熵 退化特征提取 变量预测模型
下载PDF
基于迁移VPMCD的滚动轴承故障诊断方法 被引量:2
12
作者 陈淑英 王利群 《电子测量与仪器学报》 CSCD 北大核心 2019年第3期93-98,共6页
针对滚动轴承诊断中难以获得大量故障样本的问题,拟结合迁移学习的思想,提出了一种基于迁移学习的多变量预测模型(TVPMCD)方法。该方法首先采用已知样本库建立基础变量预测模型(BVPM);然后利用少量的目标域已知样本更新基础变量预测模型... 针对滚动轴承诊断中难以获得大量故障样本的问题,拟结合迁移学习的思想,提出了一种基于迁移学习的多变量预测模型(TVPMCD)方法。该方法首先采用已知样本库建立基础变量预测模型(BVPM);然后利用少量的目标域已知样本更新基础变量预测模型,使得更新的基础变量预测模型能兼顾目标域已知样本的信息;同时,以目标域已知样本的判别误差最小为目标,剔除已知样本库中误识样本,建立迁移变量预测模型(简称TVPM);最后利用迁移变量预测模型对待测样本进行识别,从而可以有效地解决小样本的故障诊断问题。对滚动轴承数据的分析结果表明,适合于小样本的TVPMCD模式识别方法可以更快更准确地识别滚动轴承故障类型。 展开更多
关键词 TVPMCD 迁移学习 滚动轴承 故障诊断
下载PDF
基于嵌入式SRVPMCD的模式识别方法
13
作者 潘海洋 杨宇 +1 位作者 马利 程军圣 《中国机械工程》 EI CAS CSCD 北大核心 2014年第24期3308-3313,共6页
针对多变量预测模型(VPMCD)模式识别方法的固有缺陷和机械故障特征难以选择的难题,即特征维数较多时对时效性的影响和特征选择需要引入主观因素的现状,提出了一种基于嵌入式的逐步回归多变量预测模型(SRVPMCD)模式识别方法。该方法首先... 针对多变量预测模型(VPMCD)模式识别方法的固有缺陷和机械故障特征难以选择的难题,即特征维数较多时对时效性的影响和特征选择需要引入主观因素的现状,提出了一种基于嵌入式的逐步回归多变量预测模型(SRVPMCD)模式识别方法。该方法首先通过逐步回归引入变量并计算其显著水平,建立只包含显著特征值的预测模型,同时实现嵌入式特征选择和建模分类的功能,然后用所建立的预测模型来预测待分类样本的特征值,最后把预测结果作为分类依据进行模式识别。对滚动轴承故障信号的分析结果表明,基于嵌入式SRVPMCD的模式识别方法可以实现特征选择和分类的双重功能,在保证识别精度的前提下,比原VPMCD方法及其组合方法可以更快地识别滚动轴承的工作状态和故障类型。 展开更多
关键词 逐步回归 逐步回归多变量预测模型 滚动轴承 故障诊断
下载PDF
基于VMD-SVD的单向阀微弱故障诊断方法 被引量:4
14
作者 吴漫 冯早 +1 位作者 黄国勇 熊鹏博 《控制工程》 CSCD 北大核心 2021年第1期106-113,共8页
针对大型往复式机械高压隔膜泵单向阀振动信号中的微弱故障特征难以提取,且磨损击穿故障、卡阀故障及正常状态振动信号难以识别的问题,提出一种基于变分模态分解和奇异值分解的单向阀微弱故障特征提取及诊断方法。首先对振动信号进行VM... 针对大型往复式机械高压隔膜泵单向阀振动信号中的微弱故障特征难以提取,且磨损击穿故障、卡阀故障及正常状态振动信号难以识别的问题,提出一种基于变分模态分解和奇异值分解的单向阀微弱故障特征提取及诊断方法。首先对振动信号进行VMD分解,再借助能量百分比和方差贡献率筛选出包含丰富故障信息的模态IMF分量,其次对筛选后的IMF分量构建初始特征矩阵,然后利用SVD对特征矩阵进行分解,得到特征矩阵的奇异值作为表征微弱故障信号的特征向量,最后应用多变量预测模型对单向阀微弱故障进行诊断。工程实验结果表明,该方法能有效地提取出单向阀微弱故障信号特征并能对单向阀状态类型进行有效识别。 展开更多
关键词 变分模态分解 奇异值分解 单向阀 微弱故障诊断 多变量预测模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部