OBJECTIVE:To investigate the effect of Neferine(Nef)on diabetic nephropathy(DN)and to explore the mechanism of Nef in DN based on miRNA regulation theory.METHODS:A DN mouse model was constructed and treated with Nef.S...OBJECTIVE:To investigate the effect of Neferine(Nef)on diabetic nephropathy(DN)and to explore the mechanism of Nef in DN based on miRNA regulation theory.METHODS:A DN mouse model was constructed and treated with Nef.Serum creatinine(Crea),blood urea(UREA)and urinary albumin were measured in mice by kits,and renal histopathological changes and fibrosis were observed by hematoxylin-eosin staining and Masson staining.Renal tissue superoxide dismutase(SOD),malondialdehyde(MDA)and glutathione peroxidase(GSH-Px)activities were measured by enzyme-linked immunosorbent assay(ELISA).Western blotting was used to detect the expression of nuclear factor E2-related factor 2(Nrf2)/heme oxygenase 1(HO-1)signaling pathway-related proteins in kidney tissues.Quantitative reverse transcription-polymerase chain reaction(q RT-PCR)was used to detect the expression of miR-17-5p in kidney tissues.Subsequently,a DN in vitro model was constructed by high glucose culture of human mesangial cells(HMCs),cells were transfected with miR-17-5p mimic and/or treated with Nef,and we used q RTPCR to detect cellular miR-17 expression,flow cytometry to detect apoptosis,ELISAs to detect cellular SOD,MDA,and GSH-Px activities,Western blots to detect Nrf2/HO-1 signaling pathway-related protein expression,and dual luciferase reporter gene assays to verify the targeting relationship between Nrf2 and miR-17-5p.RESULTS:Administration of Nef significantly reduced the levels of blood glucose,Crea,and UREA and the expression of miR-17-5p,improved renal histopathology and fibrosis,significantly reduced MDA levels,elevated SOD and GSH-Px activities,and activated Nrf2 expression in kidney tissues from mice with DN.Nrf2 is a post-transcriptional target of miR-17-5p.In HMCs transfected with miR-17-5p mimics,the m RNA and protein levels of Nrf2 were significantly suppressed.Furthermore,miR-17-5p overexpression and Nef intervention resulted in a significant increase in high glucose-induced apoptosis and MDA levels in HMCs and a significant decrease in the protein expression of HO-1 and Nrf2.CONCLUSION:Collectively,these results indicate that Nef has an ameliorative effect on DN,and the mechanism may be through the miR-17-5p/Nrf2 pathway.展开更多
As concepts closely related to microwave absorption properties,impedance matching and phase matching were rarely combined with material parameters to regulate properties and explore related mechanisms.In this work,red...As concepts closely related to microwave absorption properties,impedance matching and phase matching were rarely combined with material parameters to regulate properties and explore related mechanisms.In this work,reduction–diffusion method was innovatively applied to synthesize rare earth alloy Y_(2)Fe_(17).In order to regulate the electromagnetic parameters of absorbers,the Y_(2)Fe_(17)N_(3-δ)particles were coated with silica(Y_(2)Fe_(17)N_(3-δ)@SiO_(2))and absorbers with different volume fractions were prepared.The relationship between impedance matching,matching thickness,and the strongest reflection loss peak(RLmin)was presented obviously.Compared to the microwave absorption properties of Y_(2)Fe_(17)N_(3-δ)/PU absorber,Y_(2)Fe_(17)N_(3-δ)@SiO_(2)/PU absorbers are more conducive to the realization of microwave absorption material standards which are thin thickness,light weight,strong absorbing intensity,and broad bandwidth.Based on microwave frequency bands,the microwave absorption properties of the absorbers were analyzed and the related parameters were listed.As an important parameter related to perfect matching,reflection factor(√ε_(r)/μ_(r))was discussed combined with microwave amplitude attenuation.According to the origin and mathematical model of bandwidth,the formula of EAB(RL<-10 dB)was derived and simplified.The calculated bandwidths agreed well with experimental results.展开更多
Background The development of benign prostatic hyperplasia(BPH)is closely related to hypoxia in the prostatic stroma,and the hypoxia-inducible factor-1α/vascular endothelial growth factor(HIF-1α/VEGF)pathway has bee...Background The development of benign prostatic hyperplasia(BPH)is closely related to hypoxia in the prostatic stroma,and the hypoxia-inducible factor-1α/vascular endothelial growth factor(HIF-1α/VEGF)pathway has been shown to significantly activate in response to hypoxia.The underlying mechanism for activation of this pathway in the pathogenesis of BPH remains unclear.Materials and methods We constructed HIF-1αoverexpression and knockdown BPH stromal(WPMY-1)and epithelial(BPH-1)cell lines,which were cultured under different oxygen conditions(hypoxia,normoxia,and hypoxia+HIF-1αinhibitor).Quantitative real-time polymerase chain reaction(qPCR)and Western blotting were applied to detect the expression of the HIF-1α/VEGF pathway.Cell proliferation and apoptosis were analyzed by Cell Counting Kit-8 and flow cytometry.We used the miRWalk 2.0 database and Western blotting to predict the potential miRNA that selectively targets the HIF-1α/VEGF pathway,and verified the prediction by qPCR and dual-luciferase assays.Results In a BPH stromal cell line(WPMY-1),the expression of VEGF was in accordance with HIF-1αlevels,elevated in the overexpression cells and decreased in the knockdown cells.Hypoxia-induced HIF-1αoverexpression,which could be reversed by a HIF-1αinhibitor.Moreover,the HIF-1αinhibitor significantly depressed cellular proliferation and promoted apoptosis in hypoxic conditions,assessed by Cell Counting Kit-8 and flow cytometry.However,in the BPH epithelial cell line(BPH-1),the expression level of HIF-1αdid not influence the expression of VEGF.Finally,a potential miRNA,miR-17-5p,regulating the HIF-1α/VEGF pathway was predicted from the miRWalk 2.0 database and Western blotting,and verified by qPCR and dual-luciferase assay.Conclusions In hypoxia,activation of the HIF-1α/VEGF pathway plays a crucial role in regulating cell proliferation in a BPH stromal cell line.Regulation by miR-17-5p may be the potential mechanism for the activation of this pathway.Regulation of this pathway may be involved in the pathogenesis of BPH.展开更多
基金the Chengdu Health and Wellness Commission:Exploring the Mechanism of Neferine on Diabetic Nephropathy Based on mi R-17/Nrf2 Axis(No.2021127)。
文摘OBJECTIVE:To investigate the effect of Neferine(Nef)on diabetic nephropathy(DN)and to explore the mechanism of Nef in DN based on miRNA regulation theory.METHODS:A DN mouse model was constructed and treated with Nef.Serum creatinine(Crea),blood urea(UREA)and urinary albumin were measured in mice by kits,and renal histopathological changes and fibrosis were observed by hematoxylin-eosin staining and Masson staining.Renal tissue superoxide dismutase(SOD),malondialdehyde(MDA)and glutathione peroxidase(GSH-Px)activities were measured by enzyme-linked immunosorbent assay(ELISA).Western blotting was used to detect the expression of nuclear factor E2-related factor 2(Nrf2)/heme oxygenase 1(HO-1)signaling pathway-related proteins in kidney tissues.Quantitative reverse transcription-polymerase chain reaction(q RT-PCR)was used to detect the expression of miR-17-5p in kidney tissues.Subsequently,a DN in vitro model was constructed by high glucose culture of human mesangial cells(HMCs),cells were transfected with miR-17-5p mimic and/or treated with Nef,and we used q RTPCR to detect cellular miR-17 expression,flow cytometry to detect apoptosis,ELISAs to detect cellular SOD,MDA,and GSH-Px activities,Western blots to detect Nrf2/HO-1 signaling pathway-related protein expression,and dual luciferase reporter gene assays to verify the targeting relationship between Nrf2 and miR-17-5p.RESULTS:Administration of Nef significantly reduced the levels of blood glucose,Crea,and UREA and the expression of miR-17-5p,improved renal histopathology and fibrosis,significantly reduced MDA levels,elevated SOD and GSH-Px activities,and activated Nrf2 expression in kidney tissues from mice with DN.Nrf2 is a post-transcriptional target of miR-17-5p.In HMCs transfected with miR-17-5p mimics,the m RNA and protein levels of Nrf2 were significantly suppressed.Furthermore,miR-17-5p overexpression and Nef intervention resulted in a significant increase in high glucose-induced apoptosis and MDA levels in HMCs and a significant decrease in the protein expression of HO-1 and Nrf2.CONCLUSION:Collectively,these results indicate that Nef has an ameliorative effect on DN,and the mechanism may be through the miR-17-5p/Nrf2 pathway.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB3501300)the National Natural Science Foundation of China(Grant No.51731001)the Fund from the State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization’s Key Research and Development Projects。
文摘As concepts closely related to microwave absorption properties,impedance matching and phase matching were rarely combined with material parameters to regulate properties and explore related mechanisms.In this work,reduction–diffusion method was innovatively applied to synthesize rare earth alloy Y_(2)Fe_(17).In order to regulate the electromagnetic parameters of absorbers,the Y_(2)Fe_(17)N_(3-δ)particles were coated with silica(Y_(2)Fe_(17)N_(3-δ)@SiO_(2))and absorbers with different volume fractions were prepared.The relationship between impedance matching,matching thickness,and the strongest reflection loss peak(RLmin)was presented obviously.Compared to the microwave absorption properties of Y_(2)Fe_(17)N_(3-δ)/PU absorber,Y_(2)Fe_(17)N_(3-δ)@SiO_(2)/PU absorbers are more conducive to the realization of microwave absorption material standards which are thin thickness,light weight,strong absorbing intensity,and broad bandwidth.Based on microwave frequency bands,the microwave absorption properties of the absorbers were analyzed and the related parameters were listed.As an important parameter related to perfect matching,reflection factor(√ε_(r)/μ_(r))was discussed combined with microwave amplitude attenuation.According to the origin and mathematical model of bandwidth,the formula of EAB(RL<-10 dB)was derived and simplified.The calculated bandwidths agreed well with experimental results.
基金the financial support granted from the Shandong Province Key Research and Development Projects(no.2016GSF201147)the Science and Technology Development Program of Jinan(no.201704127).
文摘Background The development of benign prostatic hyperplasia(BPH)is closely related to hypoxia in the prostatic stroma,and the hypoxia-inducible factor-1α/vascular endothelial growth factor(HIF-1α/VEGF)pathway has been shown to significantly activate in response to hypoxia.The underlying mechanism for activation of this pathway in the pathogenesis of BPH remains unclear.Materials and methods We constructed HIF-1αoverexpression and knockdown BPH stromal(WPMY-1)and epithelial(BPH-1)cell lines,which were cultured under different oxygen conditions(hypoxia,normoxia,and hypoxia+HIF-1αinhibitor).Quantitative real-time polymerase chain reaction(qPCR)and Western blotting were applied to detect the expression of the HIF-1α/VEGF pathway.Cell proliferation and apoptosis were analyzed by Cell Counting Kit-8 and flow cytometry.We used the miRWalk 2.0 database and Western blotting to predict the potential miRNA that selectively targets the HIF-1α/VEGF pathway,and verified the prediction by qPCR and dual-luciferase assays.Results In a BPH stromal cell line(WPMY-1),the expression of VEGF was in accordance with HIF-1αlevels,elevated in the overexpression cells and decreased in the knockdown cells.Hypoxia-induced HIF-1αoverexpression,which could be reversed by a HIF-1αinhibitor.Moreover,the HIF-1αinhibitor significantly depressed cellular proliferation and promoted apoptosis in hypoxic conditions,assessed by Cell Counting Kit-8 and flow cytometry.However,in the BPH epithelial cell line(BPH-1),the expression level of HIF-1αdid not influence the expression of VEGF.Finally,a potential miRNA,miR-17-5p,regulating the HIF-1α/VEGF pathway was predicted from the miRWalk 2.0 database and Western blotting,and verified by qPCR and dual-luciferase assay.Conclusions In hypoxia,activation of the HIF-1α/VEGF pathway plays a crucial role in regulating cell proliferation in a BPH stromal cell line.Regulation by miR-17-5p may be the potential mechanism for the activation of this pathway.Regulation of this pathway may be involved in the pathogenesis of BPH.