Integrated sensing and communication(ISAC)is regarded as a pivotal technology for 6G communication.In this paper,we employ Kullback-Leibler divergence(KLD)as the unified performance metric for ISAC systems and investi...Integrated sensing and communication(ISAC)is regarded as a pivotal technology for 6G communication.In this paper,we employ Kullback-Leibler divergence(KLD)as the unified performance metric for ISAC systems and investigate constellation and beamforming design in the presence of clutters.In particular,the constellation design problem is solved via the successive convex approximation(SCA)technique,and the optimal beamforming in terms of sensing KLD is proven to be equivalent to maximizing the signal-to-interference-plus-noise ratio(SINR)of echo signals.Numerical results demonstrate the tradeoff between sensing and communication performance under different parameter setups.Additionally,the beampattern generated by the proposed algorithm achieves significant clutter suppression and higher SINR of echo signals compared with the conventional scheme.展开更多
Accurate reconstruction from a reduced data set is highly essential for computed tomography in fast and/or low dose imaging applications. Conventional total variation(TV)-based algorithms apply the L1 norm-based pen...Accurate reconstruction from a reduced data set is highly essential for computed tomography in fast and/or low dose imaging applications. Conventional total variation(TV)-based algorithms apply the L1 norm-based penalties, which are not as efficient as Lp(0〈p〈1) quasi-norm-based penalties. TV with a p-th power-based norm can serve as a feasible alternative of the conventional TV, which is referred to as total p-variation(TpV). This paper proposes a TpV-based reconstruction model and develops an efficient algorithm. The total p-variation and Kullback-Leibler(KL) data divergence, which has better noise suppression capability compared with the often-used quadratic term, are combined to build the reconstruction model. The proposed algorithm is derived by the alternating direction method(ADM) which offers a stable, efficient, and easily coded implementation. We apply the proposed method in the reconstructions from very few views of projections(7 views evenly acquired within 180°). The images reconstructed by the new method show clearer edges and higher numerical accuracy than the conventional TV method. Both the simulations and real CT data experiments indicate that the proposed method may be promising for practical applications.展开更多
To relax the target aspect sensitivity and use more statistical information of the High Range Resolution Profiles (HRRPs), in this paper, the average range profile and the variance range profile are extracted together...To relax the target aspect sensitivity and use more statistical information of the High Range Resolution Profiles (HRRPs), in this paper, the average range profile and the variance range profile are extracted together as the feature vectors for both training data and test data representa-tion. And a decision rule is established for Automatic Target Recognition (ATR) based on the mini-mum Kullback-Leibler Distance (KLD) criterion. The recognition performance of the proposed method is comparable with that of Adaptive Gaussian Classifier (AGC) with multiple test HRRPs, but the proposed method is much more computational efficient. Experimental results based on the measured data show that the minimum KLD classifier is effective.展开更多
A generalized labeled multi-Bernoulli(GLMB)filter with motion mode label based on the track-before-detect(TBD)strategy for maneuvering targets in sea clutter with heavy tail,in which the transitions of the mode of tar...A generalized labeled multi-Bernoulli(GLMB)filter with motion mode label based on the track-before-detect(TBD)strategy for maneuvering targets in sea clutter with heavy tail,in which the transitions of the mode of target motions are modeled by using jump Markovian system(JMS),is presented in this paper.The close-form solution is derived for sequential Monte Carlo implementation of the GLMB filter based on the TBD model.In update,we derive a tractable GLMB density,which preserves the cardinality distribution and first-order moment of the labeled multi-target distribution of interest as well as minimizes the Kullback-Leibler divergence(KLD),to enable the next recursive cycle.The relevant simulation results prove that the proposed multiple-model GLMB-TBD(MM-GLMB-TBD)algorithm based on K-distributed clutter model can improve the detecting and tracking performance in both estimation error and robustness compared with state-of-the-art algorithms for sea clutter background.Additionally,the simulations show that the proposed MM-GLMB-TBD algorithm can accurately output the multitarget trajectories with considerably less computational complexity compared with the adapted dynamic programming based TBD(DP-TBD)algorithm.Meanwhile,the simulation results also indicate that the proposed MM-GLMB-TBD filter slightly outperforms the JMS particle filter based TBD(JMSMeMBer-TBD)filter in estimation error with the basically same computational cost.Finally,the impact of the mismatches on the clutter model and clutter parameter is investigated for the performance of the MM-GLMB-TBD filter.展开更多
The nodes number of the hidden layer in a deep learning network is quite difficult to determine with traditional methods. To solve this problem, an improved Kullback-Leibler divergence sparse autoencoder (KL-SAE) is...The nodes number of the hidden layer in a deep learning network is quite difficult to determine with traditional methods. To solve this problem, an improved Kullback-Leibler divergence sparse autoencoder (KL-SAE) is proposed in this paper, which can be applied to battle damage assessment (BDA). This method can select automatically the hidden layer feature which contributes most to data reconstruction, and abandon the hidden layer feature which contributes least. Therefore, the structure of the network can be modified. In addition, the method can select automatically hidden layer feature without loss of the network prediction accuracy and increase the computation speed. Experiments on University ofCalifomia-Irvine (UCI) data sets and BDA for battle damage data demonstrate that the method outperforms other reference data-driven methods. The following results can be found from this paper. First, the improved KL-SAE regression network can guarantee the prediction accuracy and increase the speed of training networks and prediction. Second, the proposed network can select automatically hidden layer effective feature and modify the structure of the network by optimizing the nodes number of the hidden layer.展开更多
Mobile Ad-hoc Networks(MANET)usage across the globe is increas-ing by the day.Evaluating a node’s trust value has significant advantages since such network applications only run efficiently by involving trustable nodes...Mobile Ad-hoc Networks(MANET)usage across the globe is increas-ing by the day.Evaluating a node’s trust value has significant advantages since such network applications only run efficiently by involving trustable nodes.The trust values are estimated based on the reputation values of each node in the network by using different mechanisms.However,these mechanisms have various challenging issues which degrade the network performance.Hence,a novel Quality of Service(QoS)Trust Estimation with Black/Gray hole Attack Detection approach is proposed in this research work.Initially,the QoS-based trust estimation is proposed by using a Fuzzy logic scheme.The trust value of each node is estimated by using each node’s reputation values which are deter-mined based on the fuzzy membership function values and utilizing QoS para-meters such as residual energy,bandwidth,node mobility,and reliability.This mechanism prevents only the black hole attack in the network during transmis-sion.But,the gray hole attacks are not identified which in turn increases the pack-et drop rate significantly.Hence,the gray hole attack is also detected based on the Kullback-Leibler(KL)divergence method used for estimating the statistical mea-sures.Additional QoS metrics are considered to prevent the gray hole attack,such as packet loss,packet delivery ratio,and delay for each node.Thus,the proposed mechanism prevents both black hole and gray hole attacks simultaneously.Final-ly,the simulation results show that the effectiveness of the proposed mechanism compared with the other trust-aware routing protocols in MANET.展开更多
For the target threat evaluation of warships formation air defense, the sample data are frequently insufficient and even incomplete. The existing evaluation methods rely too much on expertise and are difficult to carr...For the target threat evaluation of warships formation air defense, the sample data are frequently insufficient and even incomplete. The existing evaluation methods rely too much on expertise and are difficult to carry out for the dynamic evaluation on time series. In order to solve these problems, a threat evaluation method based on the AR(p)(auto regressive(AR))-dynamic improved technique for order preference by similarity to ideal solution(DITOPSIS) method is proposed. The AR(p) model is adopted to predict the missing data on the time series. Then, the entropy weight method is applied to solve each index weight at the objective point. Kullback-Leibler divergence(KLD) is used to improve the traditional TOPSIS, and to carry out the target threat evaluation. The Poisson distribution is used to assign the weight value.Simulation results show that the improved AR(p)-DITOPSIS threat evaluation method can synthetically take into account the target threat degree in time series and is more suitable for the threat evaluation under the condition of missing the target data than the traditional TOPSIS method.展开更多
This study propose a new robust method to rank the performances of multi-assets (portfolios), based purely on their return time series. This method makes no assumption on the distributions. Topsoe distance is symmet...This study propose a new robust method to rank the performances of multi-assets (portfolios), based purely on their return time series. This method makes no assumption on the distributions. Topsoe distance is symmetrized Kullback-Leibler divergence by average of the probabilities. The square root of Topsoe distance is a metric. We extend this metric from probability density functions to real number series on (0, 1 ]. We call it ST-metric. We show the consistency of ST-metric with mean-variance theory and stochastic dominance method of order one and two. We demonstrate the advantages of ST-metric over mean-variance rule and stochastic dominance method of order one and two.展开更多
A general method for assessing local influence of minor perturbations of prior in Bayesian analysis is developed in this paper. U8ing some elementary ideas from differelltial geometryl we provide a unified approach fo...A general method for assessing local influence of minor perturbations of prior in Bayesian analysis is developed in this paper. U8ing some elementary ideas from differelltial geometryl we provide a unified approach for handling a variety of problexns of local prior influence. AS applications, we discuss the local influence of small perturbstions of normal-gamma prior density in linear model and investigate local prior influence from the predictive view.展开更多
This paper investigates and discusses the use of information divergence,through the widely used Kullback–Leibler(KL)divergence,under the multivariate(generalized)γ-order normal distribution(γ-GND).The behavior of t...This paper investigates and discusses the use of information divergence,through the widely used Kullback–Leibler(KL)divergence,under the multivariate(generalized)γ-order normal distribution(γ-GND).The behavior of the KL divergence,as far as its symmetricity is concerned,is studied by calculating the divergence of γ-GND over the Student’s multivariate t-distribution and vice versa.Certain special cases are also given and discussed.Furthermore,three symmetrized forms of the KL divergence,i.e.,the Jeffreys distance,the geometric-KL as well as the harmonic-KL distances,are computed between two members of the γ-GND family,while the corresponding differences between those information distances are also discussed.展开更多
In crowdsourcing scenarios,we can obtain each instance's multiple noisy labels from different crowd workers and then infer its integrated label via label aggregation.In spite of the effectiveness of label aggregat...In crowdsourcing scenarios,we can obtain each instance's multiple noisy labels from different crowd workers and then infer its integrated label via label aggregation.In spite of the effectiveness of label aggregation methods,there still remains a certain level of noise in the integrated labels.Thus,some noise correction methods have been proposed to reduce the impact of noise in recent years.However,to the best of our knowledge,existing methods rarely consider an instance's information from both its features and multiple noisy labels simultaneously when identifying a noise instance.In this study,we argue that the more distinguishable an instance's features but the noisier its multiple noisy labels,the more likely it is a noise instance.Based on this premise,we propose a label distribution similarity-based noisecorrection(LDSNC)method.To measure whether an instance's features are distinguishable,we obtain each instance's predicted label distribution by building multiple classifiers using instances'features and their integrated labels.To measure whether an instance's multiple noisy labels are noisy,we obtain each instance's multiple noisy label distribution using its multiple noisy labels.Then,we use the Kullback-Leibler(KL)divergence to calculate the similarity between the predicted label distribution and multiple noisy label distribution and define the instance with the lower similarity as a noise instance.The extensive experimental results on 34 simulated and four real-world crowdsourced datasets validate the effectiveness of our method.展开更多
基金supported in part by National Key R&D Program of China under Grant No.2021YFB2900200in part by National Natural Science Foundation of China under Grant Nos.U20B2039 and 62301032in part by China Postdoctoral Science Foundation under Grant No.2023TQ0028.
文摘Integrated sensing and communication(ISAC)is regarded as a pivotal technology for 6G communication.In this paper,we employ Kullback-Leibler divergence(KLD)as the unified performance metric for ISAC systems and investigate constellation and beamforming design in the presence of clutters.In particular,the constellation design problem is solved via the successive convex approximation(SCA)technique,and the optimal beamforming in terms of sensing KLD is proven to be equivalent to maximizing the signal-to-interference-plus-noise ratio(SINR)of echo signals.Numerical results demonstrate the tradeoff between sensing and communication performance under different parameter setups.Additionally,the beampattern generated by the proposed algorithm achieves significant clutter suppression and higher SINR of echo signals compared with the conventional scheme.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61372172 and 61601518)
文摘Accurate reconstruction from a reduced data set is highly essential for computed tomography in fast and/or low dose imaging applications. Conventional total variation(TV)-based algorithms apply the L1 norm-based penalties, which are not as efficient as Lp(0〈p〈1) quasi-norm-based penalties. TV with a p-th power-based norm can serve as a feasible alternative of the conventional TV, which is referred to as total p-variation(TpV). This paper proposes a TpV-based reconstruction model and develops an efficient algorithm. The total p-variation and Kullback-Leibler(KL) data divergence, which has better noise suppression capability compared with the often-used quadratic term, are combined to build the reconstruction model. The proposed algorithm is derived by the alternating direction method(ADM) which offers a stable, efficient, and easily coded implementation. We apply the proposed method in the reconstructions from very few views of projections(7 views evenly acquired within 180°). The images reconstructed by the new method show clearer edges and higher numerical accuracy than the conventional TV method. Both the simulations and real CT data experiments indicate that the proposed method may be promising for practical applications.
基金Partially supported by the National Natural Science Foundation of China (No.60302009).
文摘To relax the target aspect sensitivity and use more statistical information of the High Range Resolution Profiles (HRRPs), in this paper, the average range profile and the variance range profile are extracted together as the feature vectors for both training data and test data representa-tion. And a decision rule is established for Automatic Target Recognition (ATR) based on the mini-mum Kullback-Leibler Distance (KLD) criterion. The recognition performance of the proposed method is comparable with that of Adaptive Gaussian Classifier (AGC) with multiple test HRRPs, but the proposed method is much more computational efficient. Experimental results based on the measured data show that the minimum KLD classifier is effective.
基金supported by the Fund for Foreign Scholars in University Research and Teaching Programs(B18039)Shaanxi Youth Fund(202J-JC-QN-0668).
文摘A generalized labeled multi-Bernoulli(GLMB)filter with motion mode label based on the track-before-detect(TBD)strategy for maneuvering targets in sea clutter with heavy tail,in which the transitions of the mode of target motions are modeled by using jump Markovian system(JMS),is presented in this paper.The close-form solution is derived for sequential Monte Carlo implementation of the GLMB filter based on the TBD model.In update,we derive a tractable GLMB density,which preserves the cardinality distribution and first-order moment of the labeled multi-target distribution of interest as well as minimizes the Kullback-Leibler divergence(KLD),to enable the next recursive cycle.The relevant simulation results prove that the proposed multiple-model GLMB-TBD(MM-GLMB-TBD)algorithm based on K-distributed clutter model can improve the detecting and tracking performance in both estimation error and robustness compared with state-of-the-art algorithms for sea clutter background.Additionally,the simulations show that the proposed MM-GLMB-TBD algorithm can accurately output the multitarget trajectories with considerably less computational complexity compared with the adapted dynamic programming based TBD(DP-TBD)algorithm.Meanwhile,the simulation results also indicate that the proposed MM-GLMB-TBD filter slightly outperforms the JMS particle filter based TBD(JMSMeMBer-TBD)filter in estimation error with the basically same computational cost.Finally,the impact of the mismatches on the clutter model and clutter parameter is investigated for the performance of the MM-GLMB-TBD filter.
基金Project supported by the National Basic Research Program (973) of China (No. 61331903) and the National Natural Science Foundation of China (Nos. 61175008 and 61673265)
文摘The nodes number of the hidden layer in a deep learning network is quite difficult to determine with traditional methods. To solve this problem, an improved Kullback-Leibler divergence sparse autoencoder (KL-SAE) is proposed in this paper, which can be applied to battle damage assessment (BDA). This method can select automatically the hidden layer feature which contributes most to data reconstruction, and abandon the hidden layer feature which contributes least. Therefore, the structure of the network can be modified. In addition, the method can select automatically hidden layer feature without loss of the network prediction accuracy and increase the computation speed. Experiments on University ofCalifomia-Irvine (UCI) data sets and BDA for battle damage data demonstrate that the method outperforms other reference data-driven methods. The following results can be found from this paper. First, the improved KL-SAE regression network can guarantee the prediction accuracy and increase the speed of training networks and prediction. Second, the proposed network can select automatically hidden layer effective feature and modify the structure of the network by optimizing the nodes number of the hidden layer.
文摘Mobile Ad-hoc Networks(MANET)usage across the globe is increas-ing by the day.Evaluating a node’s trust value has significant advantages since such network applications only run efficiently by involving trustable nodes.The trust values are estimated based on the reputation values of each node in the network by using different mechanisms.However,these mechanisms have various challenging issues which degrade the network performance.Hence,a novel Quality of Service(QoS)Trust Estimation with Black/Gray hole Attack Detection approach is proposed in this research work.Initially,the QoS-based trust estimation is proposed by using a Fuzzy logic scheme.The trust value of each node is estimated by using each node’s reputation values which are deter-mined based on the fuzzy membership function values and utilizing QoS para-meters such as residual energy,bandwidth,node mobility,and reliability.This mechanism prevents only the black hole attack in the network during transmis-sion.But,the gray hole attacks are not identified which in turn increases the pack-et drop rate significantly.Hence,the gray hole attack is also detected based on the Kullback-Leibler(KL)divergence method used for estimating the statistical mea-sures.Additional QoS metrics are considered to prevent the gray hole attack,such as packet loss,packet delivery ratio,and delay for each node.Thus,the proposed mechanism prevents both black hole and gray hole attacks simultaneously.Final-ly,the simulation results show that the effectiveness of the proposed mechanism compared with the other trust-aware routing protocols in MANET.
基金supported by the Postdoctoral Science Foundation of China(2013T60923)
文摘For the target threat evaluation of warships formation air defense, the sample data are frequently insufficient and even incomplete. The existing evaluation methods rely too much on expertise and are difficult to carry out for the dynamic evaluation on time series. In order to solve these problems, a threat evaluation method based on the AR(p)(auto regressive(AR))-dynamic improved technique for order preference by similarity to ideal solution(DITOPSIS) method is proposed. The AR(p) model is adopted to predict the missing data on the time series. Then, the entropy weight method is applied to solve each index weight at the objective point. Kullback-Leibler divergence(KLD) is used to improve the traditional TOPSIS, and to carry out the target threat evaluation. The Poisson distribution is used to assign the weight value.Simulation results show that the improved AR(p)-DITOPSIS threat evaluation method can synthetically take into account the target threat degree in time series and is more suitable for the threat evaluation under the condition of missing the target data than the traditional TOPSIS method.
文摘This study propose a new robust method to rank the performances of multi-assets (portfolios), based purely on their return time series. This method makes no assumption on the distributions. Topsoe distance is symmetrized Kullback-Leibler divergence by average of the probabilities. The square root of Topsoe distance is a metric. We extend this metric from probability density functions to real number series on (0, 1 ]. We call it ST-metric. We show the consistency of ST-metric with mean-variance theory and stochastic dominance method of order one and two. We demonstrate the advantages of ST-metric over mean-variance rule and stochastic dominance method of order one and two.
文摘A general method for assessing local influence of minor perturbations of prior in Bayesian analysis is developed in this paper. U8ing some elementary ideas from differelltial geometryl we provide a unified approach for handling a variety of problexns of local prior influence. AS applications, we discuss the local influence of small perturbstions of normal-gamma prior density in linear model and investigate local prior influence from the predictive view.
文摘This paper investigates and discusses the use of information divergence,through the widely used Kullback–Leibler(KL)divergence,under the multivariate(generalized)γ-order normal distribution(γ-GND).The behavior of the KL divergence,as far as its symmetricity is concerned,is studied by calculating the divergence of γ-GND over the Student’s multivariate t-distribution and vice versa.Certain special cases are also given and discussed.Furthermore,three symmetrized forms of the KL divergence,i.e.,the Jeffreys distance,the geometric-KL as well as the harmonic-KL distances,are computed between two members of the γ-GND family,while the corresponding differences between those information distances are also discussed.
基金The work was partially supported by the National Natural Science Foundation of China(Grant No.62276241)Foundation of Key Laboratory of Artificial Intelligence,Ministry of Education,China(AI2022004).
文摘In crowdsourcing scenarios,we can obtain each instance's multiple noisy labels from different crowd workers and then infer its integrated label via label aggregation.In spite of the effectiveness of label aggregation methods,there still remains a certain level of noise in the integrated labels.Thus,some noise correction methods have been proposed to reduce the impact of noise in recent years.However,to the best of our knowledge,existing methods rarely consider an instance's information from both its features and multiple noisy labels simultaneously when identifying a noise instance.In this study,we argue that the more distinguishable an instance's features but the noisier its multiple noisy labels,the more likely it is a noise instance.Based on this premise,we propose a label distribution similarity-based noisecorrection(LDSNC)method.To measure whether an instance's features are distinguishable,we obtain each instance's predicted label distribution by building multiple classifiers using instances'features and their integrated labels.To measure whether an instance's multiple noisy labels are noisy,we obtain each instance's multiple noisy label distribution using its multiple noisy labels.Then,we use the Kullback-Leibler(KL)divergence to calculate the similarity between the predicted label distribution and multiple noisy label distribution and define the instance with the lower similarity as a noise instance.The extensive experimental results on 34 simulated and four real-world crowdsourced datasets validate the effectiveness of our method.