An on-line control method of surface quality for continuous hot-dip galvanized steel strip after cooling is presented, which combines analytical dynamics theory of a thin plate with the finite element method. The inhe...An on-line control method of surface quality for continuous hot-dip galvanized steel strip after cooling is presented, which combines analytical dynamics theory of a thin plate with the finite element method. The inherent characteristics of the non-immersed and partially immersed strip in liquid zinc were calculated on the basis of theoretical analysis and numerical simulation, respectively. Multi-parameter fitting of the deviation between results using different methods was performed. To optimize the strip excitation frequency away from the resonance region, on-line vibration control of the strip near the air knife under full product conditions was achieved by changing the field production parameters based on the field test results. The results indicate that although the axial velocity has little effect on the inherent characteristics of the strip compared with other manufacturing parameters such as the steel specifications and tension, it induces external excitations,including moving the aerodynamic load and bearing vibration. To some degree, the vibration near the air knife can be reduced by strengthening the support stiffness of the contact rolls. A total on-line control program of surface quality for continuous hot-dip galvanized pure Zn and galvannealed steel sheet in the cooling section is proposed.展开更多
文摘An on-line control method of surface quality for continuous hot-dip galvanized steel strip after cooling is presented, which combines analytical dynamics theory of a thin plate with the finite element method. The inherent characteristics of the non-immersed and partially immersed strip in liquid zinc were calculated on the basis of theoretical analysis and numerical simulation, respectively. Multi-parameter fitting of the deviation between results using different methods was performed. To optimize the strip excitation frequency away from the resonance region, on-line vibration control of the strip near the air knife under full product conditions was achieved by changing the field production parameters based on the field test results. The results indicate that although the axial velocity has little effect on the inherent characteristics of the strip compared with other manufacturing parameters such as the steel specifications and tension, it induces external excitations,including moving the aerodynamic load and bearing vibration. To some degree, the vibration near the air knife can be reduced by strengthening the support stiffness of the contact rolls. A total on-line control program of surface quality for continuous hot-dip galvanized pure Zn and galvannealed steel sheet in the cooling section is proposed.