期刊文献+
共找到89篇文章
< 1 2 5 >
每页显示 20 50 100
Preliminary analysis on characteristics of coseismic deformation associated with M_S=8.1 western Kunlunshan Pass earthquake in 2001 被引量:34
1
作者 单新建 柳稼航 马超 《地震学报》 CSCD 北大核心 2004年第5期474-480,共7页
Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism... Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism solutions of the earthquake and field investigation, the characteristic of coseismic deformation of MS=8.1 western Kunlunshan Pass earthquake in 2001 was researched. The study shows that its epicenter lies in the northeast side of Hoh Sai Hu; and the seismogenic fault in the macroscopic epicentral region can be divided into two central deformation fields: the west and east segments with the lengths of 42 km and 48 km, respectively. The whole fault extends about 90 km. From the distribution of interferometry fringes, the characteristic of sinistral strike slip of seismogenic fault can be identified clearly. The deformations on both sides of the fault are different with an obviously higher value on the south side. In the vicinity of macroscopic epicenter, the maximum displacement in look direction is about 288.4 cm and the minimum is 224.0 cm; the maximum sinistral horizontal dislocation of seismogenic fault near the macroscopic epicenter is 738.1 cm and the minimum is 551.8 cm. 展开更多
关键词 合成孔径雷达干涉技术 昆仑山口西8.1级地震 同震形变场
下载PDF
Preliminary analysis on characteristics of coseismic deformation associated with MS=8.1 western Kunlunshan Pass earthquake in 2001 被引量:11
2
作者 SHAN Xin-jian(单新建) +3 位作者 LIU Jia-hang(柳稼航) MA Chao(马超) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第5期526-533,共8页
Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism... Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism solutions of the earthquake and field investigation, the characteristic of coseismic deformation of MS=8.1 western Kunlunshan Pass earthquake in 2001 was researched. The study shows that its epicenter lies in the northeast side of Hoh Sai Hu; and the seismogenic fault in the macroscopic epicentral region can be divided into two central deformation fields: the west and east segments with the lengths of 42 km and 48 km, respectively. The whole fault extends about 90 km. From the distribution of interferometry fringes, the characteristic of sinistral strike slip of seismogenic fault can be identified clearly. The deformations on both sides of the fault are different with an obviously higher value on the south side. In the vicinity of macroscopic epicenter, the maximum displacement in look direction is about 288.4 cm and the minimum is 224.0 cm; the maximum sinistral horizontal dislocation of seismogenic fault near the macroscopic epicenter is 738.1 cm and the minimum is 551.8 cm. 展开更多
关键词 INSAR M_S=8.1 western kunlunshan pass earthquake coseismic deformation
下载PDF
Analysis of Remote Sensing Images of Ground Ruptures Resulting from the Kunlun Mountain Pass Earthquake in 2001 被引量:3
3
作者 SHANXinjian LIJianhua +1 位作者 MAChao LIUJiahang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第1期43-52,共10页
On November 14, 2001, an earthquake measuring a magnitude of 8.1 occurred to the west of the Kunlun Mountain Pass which is near the border between Xinjiang and Qinghai of China. Since its epicenter is located in an ar... On November 14, 2001, an earthquake measuring a magnitude of 8.1 occurred to the west of the Kunlun Mountain Pass which is near the border between Xinjiang and Qinghai of China. Since its epicenter is located in an area at an elevation of 4900 m where the environment is extremely adverse, field investigation to this event seems very difficult. We have performed interpretation and analysis of the satellite images of ETM, SPOT, Ikonos, and ERS-1/2SAR to reveal the spatial distribution and deformation features of surface ruptures caused by this large earthquake. Our results show that the rupture zone on the ground is 426 km long, and strikes N90-110°E with evident left-lateral thrusting. In spatial extension, it has two distinct sections. One extends from the Bukadaban peak to the Kunlun Mountain Pass, with a total length of 350 km, and trending N95-110°E. Its fracture plane is almost vertical, with clear linear rupture traces and a single structure, and the maximum left-lateral offset is 7.8 m. This section is the main rupture zone caused by the earthquake, which is a re-fracturing along an old fault. The other is the section from Kushuihuan to the Taiyang Lake. It is 26 km long, trending N90-105°E, with the maximum strike-slip displacement being 3 m, and is a newly-generated seismic rupture. In a 50 km-long section between the Taiyang Lake and the Bukadaban peak, no rupture is found on the ground. The eastern and western rupture zones may have resulted from two earthquakes. The macroscopic epicenter is situated at 65 km east of the Hoh Sai Lake. The largest coseismic horizontal offset in the macroscopic epicenter ranges from 7 m to 8 m. Based on the dislocation partition of the whole rupture zone, it is suggested that this rupture zone has experienced a process of many times of intensification and fluctuation, exhibiting a remarkable feature of segmentation. 展开更多
关键词 satellite remote sensing earthquake kunlun Mountain pass ground rupture zone
下载PDF
2001年昆仑山口西MS8.1地震自发破裂过程数值模拟研究
4
作者 奉建州 廖力 +1 位作者 李平恩 吴庆举 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第6期2141-2158,共18页
2001年11月14日,青藏高原的东昆仑断裂带发生昆仑山口西MS8.1地震,现场考察和破裂过程反演结果表明这是一次破裂过程非常复杂的走滑地震事件.研究这次地震的自发破裂过程,对于认识大陆型特大地震的发生机理具有重要意义.本文利用曲线网... 2001年11月14日,青藏高原的东昆仑断裂带发生昆仑山口西MS8.1地震,现场考察和破裂过程反演结果表明这是一次破裂过程非常复杂的走滑地震事件.研究这次地震的自发破裂过程,对于认识大陆型特大地震的发生机理具有重要意义.本文利用曲线网格有限差分法对2001年昆仑山口西MS8.1地震的动力学破裂过程进行研究.首先建立能反映这次地震主要特征的三维非平面断层模型,并以地质考察、以及根据GPS和InSAR观测数据、远场地震记录得到的反演结果为约束,通过数值模拟重现了这次地震破裂过程的主要特征.在此基础上,进一步讨论了背景应力场、断层几何、摩擦系数对断层面滑移量分布、震源时间函数、破裂传播速度的影响.研究结果表明,昆仑山口西MS8.1地震发展成为具有超长破裂尺度的大型地震的重要原因可能是:青藏高原最大水平主压应力方向沿东向的顺时针旋转特征和断层面较低的动摩擦系数.并且沿昆仑山口西地震断层面的动摩擦系数可能是非均匀的,由此产生了沿断层走向复杂变化的应力降,从而导致超剪切破裂的发生,并控制了断层面滑移量分布. 展开更多
关键词 昆仑山口西ms8.1地震 曲线网格有限差分法 自发破裂过程 同震滑动量分布 超剪切破裂
下载PDF
A discussion on Corioli force effect and aftershock activity tendency of the M=8.1 Kunlun Mountain Pass earthquake on Nov. 14, 2001
5
作者 吕坚 高建华 +2 位作者 刘吉夫 胡翠娥 黄双凤 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第4期459-467,共9页
Following the theory and definition of the Corioli force in physics, the Corioli force at the site of the M=8.1 Kunlun Mountain Pass earthquake on November 14, 2001, is examined in this paper on the basis of a statist... Following the theory and definition of the Corioli force in physics, the Corioli force at the site of the M=8.1 Kunlun Mountain Pass earthquake on November 14, 2001, is examined in this paper on the basis of a statistical research on relationship between the Corioli force effect and the maximum aftershock magnitude of 20 earthquakes with M7.5 in Chinese mainland, and then the variation tendency of aftershock activity of the M=8.1 earthquake is discussed. The result shows: a) Analyzing the Corioli force effect is an effective method to predict maximum aftershock magnitude of large earthquakes in Chinese mainland. For the sinistral slip fault and the reverse fault with its hanging wall moving toward the right side of the cross-focus meridian plane, their Corioli force pulls the two fault walls apart, decreasing frictional resistance on fault plane during the fault movement and releasing elastic energy of the mainshock fully, so the maximum magnitude of aftershocks would be low. For the dextral slip fault, its Corioli force presses the two walls against each other and increases the frictional resistance on fault plane, prohibiting energy release of the mainshock, so the maximum magnitude of aftershocks would be high. b) The fault of the M=8.1 Kunlun Mountain earthquake on Nov. 14, 2001 is essentially a sinistral strike-slip fault, and the Corioli force pulled the two fault walls apart. Magnitude of the induced stress is about 0.06 MPa. After a comparison analysis, we suggest that the aftershock activity level will not be high in the late period of this earthquake sequence, and the maximum magnitude of the whole aftershocks sequence is estimated to be about 6.0. 展开更多
关键词 Corioli force effect aftershock magnitude M=8.1 kunlun Mountain pass earthquake Chinese mainland
下载PDF
Seismicity anomalies before the great earthquake of M_S=8.1 in the Kunlun Pass and its significance to earthquake prediction
6
作者 刘蒲雄 郑大林 +3 位作者 车时 潘怀文 刘桂萍 杨立明 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第2期219-225,共7页
A great earthquake of MS=8.1 took place in the west of Kunlun Pass on November 14, 2001. The epicenter is lo-cated at 36.2N and 90.9E. The analysis shows that some main precursory seismic patterns appear before the gr... A great earthquake of MS=8.1 took place in the west of Kunlun Pass on November 14, 2001. The epicenter is lo-cated at 36.2N and 90.9E. The analysis shows that some main precursory seismic patterns appear before the great earthquake, e.g., seismic gap, seismic band, increased activity, seismicity quiet and swarm activity. The evolution of the seismic patterns before the earthquake of MS=8.1 exhibits a course very similar to that found for earthquake cases with MS7. The difference is that anomalous seismicity before the earthquake of MS=8.1 involves in the lar-ger area coverage and higher seismic magnitude. This provides an evidence for recognizing precursor and fore-casting of very large earthquake. Finally, we review the rough prediction of the great earthquake and discuss some problems related to the prediction of great earthquakes. 展开更多
关键词 SEISMICITY earthquake prediction great kunlun pass earthquake of MS=8.1
下载PDF
Characteristics of Collapses Caused by the M8.1 Earthquake West of the Kunlun Mountains Pass
7
作者 WangZanjun DangGuangming TianQinjian 《Earthquake Research in China》 2003年第4期352-363,共12页
An M 8.1 earthquake that occurred west of the Kunlun Mountains Pass has caused more than 20 collapse bodies or zones, which are mainly distributed near the surface seismic rupture zone, west of Hoh Sai Lake. The colla... An M 8.1 earthquake that occurred west of the Kunlun Mountains Pass has caused more than 20 collapse bodies or zones, which are mainly distributed near the surface seismic rupture zone, west of Hoh Sai Lake. The collapses are of four types, bedrock, soil mass and ice mass collapses and avalanches. The spatial distribution and the characteristics of development of the collapses are analyzed in the paper. Comparised with those caused by other earthquakes, the collapses are smaller in scale. In addition to the lithological characteristics of the crustal media, topographic, geomorphic and climatic factors, weaker seismic ground motion is an important cause for formation of the smaller-scale collapses. The long surface rupture zone and weaker ground motion are important features of the seismic rupture, which may be related to the structure of the preexisting fault. 展开更多
关键词 kunlun Mountains pass The M 8.1 earthquake Seismic collapse Geographic environment
下载PDF
Characteristics of Far-field Precursory Anomalies Before the M_S8.1 Earthquake in the West of Kunlun Mountains Pass
8
作者 Chen Yuhua Dong Zhiping +1 位作者 Wang Peiling Li Yongqiang 《Earthquake Research in China》 2009年第3期354-371,共18页
In this study, a number of typical precursory anomalies recorded by stations in Qinghai, Gansu, Sichuan, Xinjiang, Ningxia, Hebei and Shaanxi provinces and autonomous regions before the Ms8.1 earthquake in the west of... In this study, a number of typical precursory anomalies recorded by stations in Qinghai, Gansu, Sichuan, Xinjiang, Ningxia, Hebei and Shaanxi provinces and autonomous regions before the Ms8.1 earthquake in the west of Kunlun Mountains Pass are collected and checked. According to the standards of earthquake cases in China, the criteria of the precursory anomalies are determined, and 53 distinguished. The characteristics of these anomalies before the Ms S. 1 earthquake are analyzed, with results showing a very large earthquake affected area. The precursory anomalies recorded by instruments were 2900 km away from the epicenter, and according to the study in this paper, reached 2100 km away. The results also show that the anomalies present characteristics of long duration, multi-measurement items and large-amplitude variation. The authors believe that in large earthquake monitoring, attention should be paid to the variation of data over a large area, ranging up to thousands kilometers, with much denser earthquake observation networks. 展开更多
关键词 West of kunlun Mountains pass ms8.1 earthquake Typical precursoryanomalies Analysis of anomaly characteristics
下载PDF
The Frozen Soils and Devastating Characteristics of West Kunlun Mountains Pass M_S 8.1 Earthquake Area in 2001
9
作者 ChenYongming WangLanmin +2 位作者 DaiWei WangWeifeng DaiHuaguang 《Earthquake Research in China》 2004年第4期337-347,共11页
The investigation on damages to frozen soil sites during the West Kunlun Mountains Pass earthquake with M S 8.1 in 2001 shows that the frozen soil in the seismic area is composed mainly of moraine, alluvial deposit, d... The investigation on damages to frozen soil sites during the West Kunlun Mountains Pass earthquake with M S 8.1 in 2001 shows that the frozen soil in the seismic area is composed mainly of moraine, alluvial deposit, diluvial deposit and lacustrine deposit with the depth varying greatly along the earthquake rupture zone. The deformation and rupture of frozen soil sites are mainly in the form of coseismic fracture zones caused by tectonic motion and fissures, liquefaction, seismic subsidence and collapse resulting from ground motion. The earthquake fracture zones on the surface are main brittle deformations, which, under the effect of sinistral strike-slip movement, are represented by shear fissures, tensional cracks and compressive bulges. The distribution and configuration patterns of deformation and rupture such as fissures, liquefaction, seismic subsidence and landslides are all related to the ambient rock and soil conditions of the earthquake area. The distribution of earthquake damage is characterized by large-scale rupture zones, rapid intensity attenuation along the Qinghai-Xizang (Tibet) Highway, where buildings distribute and predominant effect of rock and soil conditions. 展开更多
关键词 The West kunlun Mountains pass M S8.1 earthquake Frozen soil Devastating characteristics
下载PDF
New Insight into the Surface Rupture Parameters of the Kunlun Mountains Pass M_S8.1 Earthquake
10
作者 Tian Qinjian Zhang Liren +2 位作者 Hao Ping Wang Zanjun Wang Zhicai 《Earthquake Research in China》 2005年第3期282-291,共10页
Field observation shows that the surface rupture of the Kunlun Mountains Pass M_S 8.1 earthquake is about 426km long, and the maximum sinistral displacement is about 6m. Distribution of horizontal displacement along t... Field observation shows that the surface rupture of the Kunlun Mountains Pass M_S 8.1 earthquake is about 426km long, and the maximum sinistral displacement is about 6m. Distribution of horizontal displacement along the surface ruptures is markedly controlled by fault structure. The rupture length of this earthquake is significantly longer than statistic value. In this paper, using the method of “ultimate linear strain", we discussed the independency and integrality of the whole rupture zone and rupture segments of the Kunlun Mountains Pass earthquake by comparing with some large earthquakes on strike-slip faults on the Chinese continent. The conclusion is that the Kunlun Mountains Pass earthquake consists of successively triggered multiple earthquake events, other than a single earthquake event. 展开更多
关键词 Fault segmentation Ultimate linear strain Rupture parameters Triggered earthquake kunlun Mountains pass Ms8. 1 earthquake
下载PDF
Decomposing InSAR LOS displacement into co-seismic dislocation with a linear in-terpolation model: A case study of the Kunlun Mountain M_s=8.1 earthquake 被引量:2
11
作者 马超 单新建 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2006年第1期100-107,共8页
It has always been a difficult problem to extract horizontal and vertical displacement components from the InSAR LOS (Line of Sight) displacement since the advent of monitoring ground surface deformation with InSAR ... It has always been a difficult problem to extract horizontal and vertical displacement components from the InSAR LOS (Line of Sight) displacement since the advent of monitoring ground surface deformation with InSAR technique. Having tried to fit the firsthand field investigation data with a least squares model and obtained a preliminary result, this paper, based on the previous field data and the InSAR data, presents a linear cubic interpolation model which well fits the feature of earthquake fracture zone. This model inherits the precision of investigation data; moreover make use of some advantages of the InSAR technique, such as quasi-real time observation, continuous recording and all-weather measurement. Accordingly, by means of the model this paper presents a method to decompose the InSAR slant range co-seismic displacement (i.e. LOS change) into horizontal and vertical displacement components. Approaching the real motion step by step, finally a serial of curves representing the co-seismic horizontal and vertical displacement component along the main earthquake fracture zone are approximately obtained. 展开更多
关键词 InSAR (Interferometry Synthetic Aperture Radar) least squares fiting linear interpolation LOS co-seismic dislocation kunlun Mountain Ms=8.1 earthquake
下载PDF
Effect of Kunlun Ms 8.1 earthquake on crustal deformation in northeastern edge region of Qinghal-Tibet plateau 被引量:2
12
作者 Duxin Cui Qingliang Wang Wenping Wang 《Geodesy and Geodynamics》 2010年第1期34-41,共8页
Seismic fault parameters can be inversed with Okada model based on deformation data before and after earthquakes in focal region and its adjacent area. Co-seismic displacements can be simulated by using these paramete... Seismic fault parameters can be inversed with Okada model based on deformation data before and after earthquakes in focal region and its adjacent area. Co-seismic displacements can be simulated by using these parameters,and then regional velocity field obtained by deducting the co-seismic displacements from the observed displacements by GPS method. We processed and analyzed the data in the northeastern edge region of the Qinghai-Tibet plateau observed during 2001 -2003 in two steps: firstly, the displacements generated by Kunlun MsS. 1 earthquake of 2001 in this region was simulated, and secondly, deducted the co-seismic displacements from it and obtained the horizontal crustal velocity field. The results reveal : 1 ) the effect of Kunlun Ms8.1 earthquake on crustal deformation in this region is significant; 2 )the velocity field obtained with this method is better than the original GPS velocity field in reflecting the status of regional crustal movement and strain. 展开更多
关键词 northeastern edge of the Qinghai-Tibet block co-seismic displacement GPS velocity field kunlun ms8.1 earthquake crustal movement
下载PDF
Estimation of the 2001 Kunlun earthquake fault slip from GPS coseismic data using Hori’s inverse method 被引量:1
13
作者 Honglin Jin Hui Wang 《Earthquake Science》 CSCD 2009年第6期609-614,共6页
The Hori's inverse method based on spectral decomposition was applied to estimate coseismic slip distribution on the rupture plane of the 14 November 2001 Ms8.1 Kunlun earthquake based on GPS survey results. The inve... The Hori's inverse method based on spectral decomposition was applied to estimate coseismic slip distribution on the rupture plane of the 14 November 2001 Ms8.1 Kunlun earthquake based on GPS survey results. The inversion result shows that the six sliding models can be constrained by the coseismic GPS data. The established slips mainly concentrated along the eastern segment of the fault rupture, and the maximum magnitude is about 7 m. Slip on the eastern segment of the fault rupture represents as purely left-lateral strike-slip. Slip on the western segment of the seismic rupture represents as mainly dip-stip with the maximum dip-slip about 1 m. Total predicted scalar seismic moment is 5.196× 10^2° N.m. Our results constrained by geodetic data are consistent with seismological results. 展开更多
关键词 kunlun ms8.1 earthquake coseismic GPS data fault slip inversion
下载PDF
Horizontal crustal movement in Chinese mainland before and after the great Kunlun Mountain M=8.1 earthquake in 2001
14
作者 顾国华 张晶 王武星 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第6期676-685,共10页
The continuous GPS observation at the fiducial stations in the Crustal Movement Observation Network of China (CMONOC) recorded the crustal movement of Chinese mainland before and after the great Kunlun Mountain earthq... The continuous GPS observation at the fiducial stations in the Crustal Movement Observation Network of China (CMONOC) recorded the crustal movement of Chinese mainland before and after the great Kunlun Mountain earthquake of M=8.1 on November 14, 2001, especially the horizontal crustal movement in the western part of China. Based on the datum defined by a group of stable stations with small mutual horizontal displacements for a few years, the time series of horizontal displacements at fiducial stations were obtained. Significant anomalous horizontal displacements had appeared at the fiducial stations in the western part of China since early November 2000 and several earthquakes with the magnitudes about 6.0 had occurred in Yunnan and Sichuan Provinces. The northward components of the horizontal displacement at the fiducial stations in west China had decreased signifi-cantly and even changed in the opposite sense since mid April 2001. After the earthquake, the northward dis-placements still decreased and there were significant westward displacements. The process of the crustal move-ment in the western part of Chinese mainland (in reference to east China) suggests that the main force source for this earthquake came from the northward pushing of the Indian plate. The great earthquake released a large amount of energy, as a result, the action applied by the Indian plate to Chinese mainland diminished significantly and after the great earthquake, the seismic activity in Chinese mainland decreased considerably until the end of 2002. 展开更多
关键词 crustal movement GPS earthquake prediction great kunlun Mountain earthquake of M=8.1 time series
下载PDF
Estimation of the stress levels in the focal region before and after the 2001 M=8.1 Western Kunlun Mountain Pass earth-quake
15
作者 陈学忠 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2005年第6期651-655,共5页
A method estimating the stress level in the focal region of an earthquake is proposed here. Taking the 2001 M=8.1 Western Kunlun Mountain Pass earthquake as an example, we estimate its stress level in the focal region... A method estimating the stress level in the focal region of an earthquake is proposed here. Taking the 2001 M=8.1 Western Kunlun Mountain Pass earthquake as an example, we estimate its stress level in the focal region before and after it by this method. The results show that the stress level in the focal region just prior to the initiation of this event is approximately 6.3-8 MPa, and about 5-6.7 MPa remained in the focal region after its occurrence. The stress in the focal region decreased by roughly twenty percent after this event. 展开更多
关键词 Western kunlun Mountain pass earthquake focal region stress level
下载PDF
Study on rupture zone of the M=8.1 Kunlun Mountain earthquake using fault-zone trapped waves
16
作者 李松林 张先康 樊计昌 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2005年第1期43-52,共10页
The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated ... The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface. 展开更多
关键词 fault-zone trapped waves M=8.1 kunlun Mountain earthquake seismic rupture plane
下载PDF
Influence of the Kunlun Mountain M_S8.1 Earthquake on Horizontal Crustal Deformation in the Sichuan and Yunnan Area
17
作者 Yang Guohua Jiang Zaiseng +4 位作者 Zhang Fengshuang Liu Xia Han Yueping Shen Wuchun Wang Li 《Earthquake Research in China》 2007年第3期269-280,共12页
In order to track the space-time variation of regional strain field holistically(in a large scale) and to describe the regional movement field more objectively,the paper uses a nonlinear continuous strain model focuse... In order to track the space-time variation of regional strain field holistically(in a large scale) and to describe the regional movement field more objectively,the paper uses a nonlinear continuous strain model focused on extracting medium-low frequency strain information on the basis of a region with no rotation.According to the repeated measurements(1999~2001~2004) from GPS monitoring stations in the Sichuan and Yunnan area obtained by the Project of "China Crust Movement Measuring Network",and with the movement of 1999~2001(stage deformation background) as the basic reference,we separated the main influencing factors of the Kunlun Mountain M-S8.1 earthquake in 2001 from the data of 2001 and 2004,and the results indicate:(1) the Kunlun Mountain M-S8.1 earthquake has a discriminating effect on the Sichuan and Yunnan area,moreover,the deformation mode and background had not only certain similitude but also some diversity;(2) The movement field before the earthquake was very ordinal,while after the earthquake,order and disorder existed simultaneously in the displacement field;The displacement quantities of GPS monitoring stations were generally several millimeters;(3) The principal strain field before earthquake was basically tensile in an approximate EW direction and compressive in the SN direction,and tension was predominant.After the earthquake,the principal strain field in the Sichuan area was compressive in the EW direction and tensile in the SN direction,and the compression was predominant.In the Yunnan area,it was tensional in the NE direction and compressive in the NW direction,and tension was predominant;(4) The surficial strain before the earthquake was dominated by superficial expansion,the contractive area being located basically in the east boundary of Sichuan and Yunnan block and its neighborhood.After the earthquake,the Sichuan area was surface contractive(the further north,the greater it was),and south of it was an area of superficial expansion.Generally speaking,the Kunlun Mountain M-S8.1 earthquake played an active role in the accumulation of energy in the Sichuan and Yunnan area.Special attention shall be focused on the segment of Xichang-Dongchuan and its neighborhood. 展开更多
关键词 Ms 8.1 kunlun Mountain earthquake Sichuan and Yunnan area GPS Horizontal movement and strain earthquake risk
下载PDF
Numerical Simulation on Coseismic Effect of the November 14,2001 Great Kunlun Earthquake,Northern Tibet,China
18
作者 Wang Hui Zhang Guomin +3 位作者 Zhang Huai Shi Yaolin Liu Jie Shen Xuhui 《Earthquake Research in China》 2008年第2期195-205,共11页
The November 14,2001 M_S8.1 Kunlun Mountains earthquake in northern Tibet is the largest earthquake occurring on the Chinese mainland since 1950.We apply a three-dimensional(3-D)finite element numerical procedure to m... The November 14,2001 M_S8.1 Kunlun Mountains earthquake in northern Tibet is the largest earthquake occurring on the Chinese mainland since 1950.We apply a three-dimensional(3-D)finite element numerical procedure to model the coseismic displacement and stress fields of the earthquake based on field investigations.We then further investigate the stress interaction between the M_S8.1 earthquake and the intensive aftershocks.Our primary calculation shows that the coseismic displacement field is centralized around the east Kunlun fault zone.And the attenuation of coseismic displacements on the south side of Kunlun fault zone is larger than that on the north side.The calculated coseismic stress field also indicates that the calculated maximal shear stress field is centralized around the east Kunlun fault zone;the directions of the coseismic major principal stress are opposite to that of the background crustal stress field of the Qinghai-Xizang(Tibet)Plateau.It indicates that the earthquake relaxes the crustal stress state in the Qinghai-Xizang(Tibet)Plateau.Finally,we study the stress interaction between M_S8.1 earthquake and its intensive aftershocks.The calculated Coulomb stress changes of the M_S8.1 great earthquake are in favor of triggering 4 aftershocks. 展开更多
关键词 The ms8.1 kunlun Mountains earthquake Coseismic displacement Coseismic stress Numerical simulation
下载PDF
昆仑山口西Ms8.1地震同震形变场的模拟分析 被引量:14
19
作者 张晓亮 江在森 +2 位作者 张希 赵永年 朱桂芝 《大地测量与地球动力学》 CSCD 北大核心 2007年第2期16-21,共6页
利用弹性有限元方法,结合GPS观测资料,模拟了昆仑山口西Ms8.1地震产生的同震水平位移场,计算了同震视应变变化场及主要活动断裂的同震错动。结果显示:1)昆仑大震对整个中国西部形变场影响非常明显,在发震断裂两侧一定区域内形成了一个... 利用弹性有限元方法,结合GPS观测资料,模拟了昆仑山口西Ms8.1地震产生的同震水平位移场,计算了同震视应变变化场及主要活动断裂的同震错动。结果显示:1)昆仑大震对整个中国西部形变场影响非常明显,在发震断裂两侧一定区域内形成了一个主压应变高值区;2)大震使新疆东部与新甘交界部形成强烈的顺时针旋转,触发了玉门5.9级、石河子5.4级地震,同时使阿尔金断裂形成强烈的分段差异运动特性;3)大震使青藏块体东北缘运动几乎整体反向,在德令哈周围、青藏块体东北缘的东部积累了部分应变能;4)大震对川、藏交接部影响较大,同震时积累了一些应变能。 展开更多
关键词 昆仑山口西ms8.1地震 有限元方法 同震水平位移场 视应变变化场 青藏块体
下载PDF
Regional tectonic deformation setting before the Ms8.1 earthquake in the west of the Kunlun Mountains Pass 被引量:7
20
作者 JIANG Zaisen (江在森) ZHANG Xi (张 希) ZHU Yiqing (祝意青) ZHANG Xiaoliang (张晓亮) WANG Shuangxu (王双绪) 《Science China Earth Sciences》 SCIE EI CAS 2003年第z2期227-242,共10页
This paper gives a preliminarily study of the regional tectonic deformation setting before the Ms8.1 earthquake that occurred in the west of the Kunlun Mountains Pass; in the study, the data of the velocity field of c... This paper gives a preliminarily study of the regional tectonic deformation setting before the Ms8.1 earthquake that occurred in the west of the Kunlun Mountains Pass; in the study, the data of the velocity field of crustal horizontal movement during 1991-2000 observed by GPS in and around the Qinghai-Tibet block and those of gravity reiteration in 1998 and 2000 were used. Analysis shows that the preparation and occurrence of this large earthquake are related to the horizontal movement and deformation setting in a large region and might be attributed to the block activity on a relatively large scale. Within the Qinghai-Tibet block, the region of left-lateral shear deformation is of a very large extent. This large earthquake occurred right in such a place where the left-lateral shear strain along the fault strike had the highest rate and the planar dilatation strain was tensile, which was on the margin of negative value region of abnormal gravity variation. The regional tectonic deformation setting can help the huge left-lateral strike-slip rupture to develop. 展开更多
关键词 earthquake in the west of the kunlun MOUNTAINS pass REGIONAL horizontal movement tectonic deformation gravity variation.
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部