期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Paleo-Tethyan Oceanic Crust Subduction in the Eastern Section of the East Kunlun Orogenic Belt:Geochronology and Petrogenesis of the Qushi'ang Granodiorite 被引量:14
1
作者 CHEN Guochao PEI Xianzhi +6 位作者 LI Ruibao LI Zuochen LIU Chengjun CHEN Youxin PEI Lei WANG Meng LI Xiaobing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期565-580,共16页
The Qushi’ang granodiorite(QSG) is located at the central east of the ophiolitic melange belt in the East Kunlun Orogenic Belt(EKOB) in the northern margin of the Qinghai-Tibetan Plateau. LA-MC-ICP-MS zircon U–P... The Qushi’ang granodiorite(QSG) is located at the central east of the ophiolitic melange belt in the East Kunlun Orogenic Belt(EKOB) in the northern margin of the Qinghai-Tibetan Plateau. LA-MC-ICP-MS zircon U–Pb dating suggests that the granodiorite and mafic microgranular enclaves(MMEs) crystallized 246.61±0.62 and 245.45±0.9 Ma ago, respectively. Granodiorite, porphyritic diorite, and MMEs are metaluminous and medium-K calk-alkaline series, with island-arc magma features, such as LILE enrichment and HFSE depletion. The porphyritic diorite has high Cr(13.50 ppm to 59.01 ppm), Ni(228.53 ppm to 261.29 ppm), and Mg~#(46–54). Granodiorite and porphyritic diorite have similar mineral compositions and evolved major and trace elements contents, particularly Cr and Ni, both of which are significantly higher than that in granites of the same period. The crystallization age of MMEs is close to that of granodiorite, and their major and trace elements contents are in-between porphyritic diorite and granodiorite. The results suggest that the original mafic magma, which was the product of mantle melting by subduction process, intruded into the lower crust(Kuhai Rock Group), resulting in the formation of granodiorite. Countinous intrusion of mafic magma into the unconsolidated granodiorite formed MMEs and porphyritic diorite. The granodiorite reformed by late-stage strike-slip faulting tectonic event indicates that the strike-slip fault of Middle Kunlun and the collision of the Bayanhar block with East Kunlun were later than 246 Ma. Therefore, the formation of the QSG not only indicates the critical period of evolution of East Kunlun but also represents the tectonic transition from oceanic crust subduction to slab breaking. 展开更多
关键词 East kunlun orogenic belt(EKOB) Qushi’ang granodiorite(QSG) mafic microgranular enclaves(MME) Early Triassic TIBET Proto-Tethy
下载PDF
Paleozoic post-collisional magmatism and high-temperature granulite-facies metamorphism coupling with lithospheric delamination of the East Kunlun Orogenic Belt,NW China 被引量:13
2
作者 Qian Wang Jiao Zhao +3 位作者 Chuanlin Zhang Shengyao Yu Xiantao Ye Xiaoqiang Liu 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第1期96-113,共18页
Lithosphere extension and upwelling of asthenosphere at post-collisional stage of an orogenic cycle generally induce diverse magmatism and/or associated high-temperature metamorphism. Nevertheless, the intimate coexis... Lithosphere extension and upwelling of asthenosphere at post-collisional stage of an orogenic cycle generally induce diverse magmatism and/or associated high-temperature metamorphism. Nevertheless, the intimate coexistence of post-collisional magmatic activity and high-temperature metamorphism is rare.In this contribution, a lithological assemblage composing of diverse magmatic rocks deriving from distinct magma sources and coeval high-temperature metamorphism was identified in eastern Kunlun.Petrography, ages, mineral chemistry and whole-rock geochemistry demonstrated that those intimately coexistent diverse rocks were genetically related to post-collisional extension. The garnet-bearing mafic granulites in Jinshuikou area interior of the East Kunlun Orogenic Belt are mainly composed of garnet,orthopyroxene, and plagioclase, with peak metamorphic P–T conditions of ~ 701–756 ℃and 5.6–7.0 kbar,representing a granulite-facies metamorphism at 409.7 ± 1.7 Ma. The diverse contemporaneous magmatic rocks including hornblendites, gabbros and granites yield zircon U–Pb ages of 408.6 ± 2.5 Ma,413.4 ± 4.6 Ma, and 387–407 Ma, respectively. The hornblendites show N-MORB-like REE patterns with(La/Sm)Nvalues of 0.85–0.94. They have positive zircon εHf(t) values of 0.1–4.9 and whole-rock εNd(t) values of 3.9–4.7 but relatively high(^(87)Sr/^(86)Sr)_(i)values of 0.7081 to 0.7088. These features demonstrate that the hornblendites derived from a depleted asthenospheric mantle source with minor continental crustal materials in source. As for the gabbros, they exhibit arc-like elemental signatures, low zircon εHf(t) values(-4.3 to 2.5) and variable whole-rock εNd(t) values(-4.9 to 1.2) as well as high(^(87)Sr/86 Sr)ivalues(0.7068 to 0.7126), arguing for that they were originated from partial melting of heterogeneous lithospheric mantle anteriorly metasomatized by subducted-sediment released melts. Geochemistry of the granites defines their strongly peraluminous S-type signatures. Zircons from the granites yield a large range of εHf(t) values ranging from -30.8 to -5.1, while the whole-rock samples yield consistent(^(87)Sr/86 Sr)ivalues(0.7301 to 0.7342) and negative εNd(t) values(-10.1 to -12.4). These features indicate that the S-type granites could be generated by reworking of an ancient crust. Taken together, the penecontemporaneous magmatism and metamorphic event, demonstrated the early-middle Devonian transition from crustal thickening to extensional collapse. The post-collisional mantle-derived magmas serve as an essential driving force for the high-temperature granulite-facies metamorphism and anataxis of the crust associated with formation of S-type granite. This study not only constructs a more detail Proto-Tethys evolution process of the eastern Kunlun, but also sheds new light on better understanding the intimate relationship between magmatism and metamorphism during post-collisional extensional collapse. 展开更多
关键词 East kunlun orogenic belt Post-collisional extensional collapse MAGMATISM High-temperature metamorphism Crust-mantle interaction
下载PDF
Junction and Evolution of the Qinling,Qilian and Kunlun Orogenic Belts 被引量:6
3
作者 SUN Yangui CHEN Zhengxing +2 位作者 LIU Yong’an WANG Tongqing ZHANG Zhiyong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第2期223-228,共6页
As the main part of the “central mountain system” in the continent of China, the Qinling, Qilian and Kunlun orogenic belts have been comprehensively and deeply studied since the 1970s and rich fruits have been reape... As the main part of the “central mountain system” in the continent of China, the Qinling, Qilian and Kunlun orogenic belts have been comprehensively and deeply studied since the 1970s and rich fruits have been reaped. However, these achievements were mostly confined to an individual orogenic belt and the study of the mutual relationship among the three orogenic belts was obliged to depend on comparative studies. Different views were produced therefrom. The material composition and structural features of the junction region show that there are several epicontinental and intracontinental transform faults developed in different periods. Restricted by these transform faults, the large-scale lateral movements and, as a consequence, complicated magmatism and tectonic deformation took place in the orogenic belts. According to these features, the authors put forward a three-stage junction and evolution model and point out that there is not a single junction zone traversing from west to east but that the three orogenic belts have been joined progressively by the epicontinental and intracontinental transform faults. 展开更多
关键词 central mountains QINLING Qilian and kunlun orogenic belts junction and evolution intracontinental transform fault
下载PDF
Rock Series and Genetic Types of Granitoids in the Western Kunlun Orogenic Belt,China 被引量:5
4
作者 JIANG Yaohui ZHOU Xunruo +3 位作者 RUI Xingjian GUO Kunyi HE Jurui YANG Wanzhi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2001年第1期19-26,共8页
A systematic geological and geochemical study was conducted for the granitoids of different periods in the western Kunlun orogenic belt. The study indicates that the granitoids belong to tholeiitic, calc-alkaline, hig... A systematic geological and geochemical study was conducted for the granitoids of different periods in the western Kunlun orogenic belt. The study indicates that the granitoids belong to tholeiitic, calc-alkaline, high-K calc-alkaline, alkaline and shoshonitic series, and that there are 5 genetic types, i.e., I-, S-, M-, A- and SH-type, of which SH-type is first put forward in this paper, which corresponds to shoshonitic granitoids. 展开更多
关键词 GRANITOID rock series genetic type western kunlun orogenic belt
下载PDF
Magma Mixing and Mingling for Xiangjiananshan Granitic batholith at eastern area of the East Kunlun Orogenic Belt 被引量:5
5
作者 CHEN Guochao PEI Xianzhi +4 位作者 LI Ruibao LI Zuochen LIU Chenjun CHEN Youxin PEI Lei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期63-,共1页
The East Kunlun Orogenic Belt(EKOB)in northeast margin of the Qinghai-Tibetan Plateau is an important part of the Central Orogenic System(COS).During the long-time geological evolution,complicated tectono
关键词 area Magma Mixing and Mingling for Xiangjiananshan Granitic batholith at eastern area of the East kunlun orogenic belt
下载PDF
MULTI-ARC BASIN SYSTEM OF THE KUNLUN OROGENIC BELT AND PAN-CATHYSIAN CONTINENTAL ACCRETION 被引量:1
6
作者 YIN Fuguang, PAN Guitang and LI Xingzhen(Chengdu Institute of Geology and Mineral Resources, Chengdu, SC610081, China) 《Geotectonica et Metallogenia》 2003年第1期145-155,共11页
After Rodinia supercontinent was disintegrated in Late Proterozoic, an ocean, namely, Tethys Ocean, occurred between Gondwana continental group and Pan-Cathaysian continental group from Late Proterozoic to Mesozoic. F... After Rodinia supercontinent was disintegrated in Late Proterozoic, an ocean, namely, Tethys Ocean, occurred between Gondwana continental group and Pan-Cathaysian continental group from Late Proterozoic to Mesozoic. From Early Paleozoic to Mesozoic, Tethys Ocean was subducted toward Pan-Cathaysian block group, which results in backarc expansion, arc-land collision and forearc accretion. When the backarc basin expands and reaches the small oceanic basin, ophiolite melange will be generated. As accretion had already occurred in the south of the continental margin in the earlier stage, the succeeding backarc expansion and the frontal arc position were migrated toward south correspondingly. Therefore, multiple ophiolite belts and magmatic rock belts occurred, and show a trend of decreasing age from north toward south. As the continental margin was split and migrated toward south and reached a high latitude position, i.e., with the shortening and subduction of oceanic crust, the sedimentary bodies at high latitude was accreted continuously toward low latitude area together with the formation of oceanic island, mixing of cold-type and warm-type organism was generated. Moreover,blocks split and separated from Pan-Cathaysian or Gondwana continental group cannot traverse the oceanic median ridge and joins with another continental block. As a result, the Kunlun belt on the SW margin of the Pan-Cathaysian land was resulted from the multi-arc orogenesis such as the backarc seabed expansion, arc-arc collision, arc-land collision oceanic bed, and the continuous southward accretion process. 展开更多
关键词 multi-arc basin system kunlun orogenic belt Pan-Cathaysian land continental accretion
下载PDF
Cenozoic Exhumation History of the East Kunlun Orogenic Belt Constrained by Apatite Fission-Track Thermochronology
7
作者 YANG Wei XIA Guoqing +1 位作者 WU Chihua YI Haisheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第3期1255-1256,共2页
Objective The East Kunlun Orogenic belt constitutes the first marked change in the topographic reliefs north of the Qinghai-Tibet Plateau.The Cenozoic tectonic evolution of this orogenic belt is crucial for understand... Objective The East Kunlun Orogenic belt constitutes the first marked change in the topographic reliefs north of the Qinghai-Tibet Plateau.The Cenozoic tectonic evolution of this orogenic belt is crucial for understanding the remote deformational effects of the Eurasian plate collision and the migration track at the northern margin of the plateau.However,when and how the uplift occurred remains 展开更多
关键词 Cenozoic Exhumation History the East kunlun orogenic belt Constrained Apatite Fission-Track Thermochronology
下载PDF
Magma Mixing and Mingling for Xiangjiananshan Granitic batholith at eastern area of the East Kunlun Orogenic Belt
8
作者 Tao Rui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期119-120,共2页
The Changning Menglian belt is an important area of research on the evolution of the Paleo Tethys ocean structure,the belt can be solved such as the Changning Menglianbeltposition;sequencestratigraphy;sedimentary envi... The Changning Menglian belt is an important area of research on the evolution of the Paleo Tethys ocean structure,the belt can be solved such as the Changning Menglianbeltposition;sequencestratigraphy;sedimentary environment;nature and its tectonic evolution history and tectonic domain and Gut Tis relationship;therefore,the research on Chang Ning Menglian zone have a great significance to solve many problems of the Sanjiang fold belt in Tethys and Himalaya tectonic area.'Hot spring'is located in the west margin of the southern Changning Menglian belt,studying Yunnan Fengqing hot spring group'geological and petrology characteristics roundly and in depth,concluding the metamorphism and deformation characteristics,clarifying the metamorphism effect and its stages,understanding the association its combination with the Changning Menglian belt between,therefore it has the great significance to solve the geological evolution history in the Sanjiang area,especially the paleo Tethyan tectonic belt,as well as Gondwana and Eurasia boundaries and other major problem.Through collect and read the literature data,measurement of field section,geological investigation,research and Study on rock sheet indoor,rock composition test,electron probe testing system,summarize the geological characteristics and petrological characteristics of'hot springs group',and through the discussion of the geochemical characteristics of rocks,explore its rock assemblages,characteristics of original rock and analysis of metamorphism and deformation stages,to provide basic data for regional geological evolution.The study shows that the main lithology is biotite quartz schist,mica schist and epimetamorphic sandstone interspersed with a small amount of phyllonite,granulite,silicalite,carbonaceous slate and phyllitic cataclasite that contains some pressure breccia.The metamorphic mineral paragenetic assemblage of the representative rock is:M1 biotite(Bi)+plagioclase(Pl)+quartz(Q),and M2 muscovite(Mus)+quartz(Q).The protolith is felsic rock and sedimentary rock that belongs to argiloid.On the basis of comparison,the stratigraphic sequence of the protolith is consistent with the type section of Wenquan formation.Along with the subduction(Hercynian)-subduction(Indosinian)-orogenic(Yanshan Himalayan period)process of Changning Menglian belt,hot springs group experienced two stages of metamorphism and three stages of deformation,metamorphic temperature at400-500℃,the pressure is foucs on 0.3-0.62Gpa,and shown the retrograde metamorphism of the low greenschist facies.Geological age of hot springs formation is early Devonian(survey team of Yunnan District three units,1980),sedimentary environment is mainly shallow and semi deep sea,observed Bouma sequence in rock slice,therefore,the depositional environment may be fan or basin of sea,the sedimentary formations are mainly clastic rocksiliceous rock formation,the upper coal—contained formation.With the Changning Meng Lian ocean expansion,ocean island begin to develop,material deposition continuing,appearing volcano material,the protolith may contain volcano matter through studying the thin section.To the Late Permian,Crust of Changning Menglian ocean begin to subduct to the east of the Yangtze block,ocean basin began to close,but it still has formation here at this time,mainly shallow carbonate formation,with proceeding of subduction,in the low temperature groove(7Km deep),due to changes in temperature and pressurer,appearing metamorphism(M1)and deformation(D1)for the first time,the shear effect produced by deformation lead to some cleavage,occurring regional foliation S1,major metamorphic minerals formed in metamorphism is long flake biotite.The main metamorphic mineral assemblages are biotite(Bi)+feldspar(Pl)+quartz(Q).Subsequently,crustal uplift,depositional break,because the Changning Meng Lianyang has closed during the Indosinian period,Baoshan-Zhenkang block in the west and the Yangtze block in the east knocked each other.In the Indosinian,under the action of faults,the hot spring formation clipping and retracing,back to a position about1-2Km depth,the position is still belongs to the low temperature groove,and occurring axial cleavage in the core of the fold,namely S2.That is,the emergence of the second metamorphism(M2)and deformation(D2).The deformation is affected by the strong pressure,so the rock have dewatered,so the second metamorphic deformation process is affected by temperature(T),pressure(Ps)and fluid(C).The main metamorphic minerals in the second generation of metamorphism is Muscovite,while there have some of biotite formed in same period,find that the first phase of biotite parallel growth of rock slice,namely S1 parallel S2,and we can see incomplete metamorphism biotite,so the the Muscovite is formed by the first stage of metamorphism and metamorphic biotite.The main mineral of the second stage metamorphism is Muscovite(Mus)+quartz(Q) Then,the crust continues to rise,the sedimentary break continues.In the Jurassic Cretaceous start orogeny,namely Yanshan period intracontinental orogeny,occurred third deformation(D3),under extrusion shearing,S3 emergencing,after Yanshan intracontinental orogenic period,in Himalayan period there have large-scale nappe structure and differential uplift and faulting.So the third deformation(D3)strengthened,with weak metamorphism,sericite emergencing. 展开更多
关键词 area ROCK Magma Mixing and Mingling for Xiangjiananshan Granitic batholith at eastern area of the East kunlun orogenic belt
下载PDF
Crustal architecture and metallogeny associated with the Paleo-Tethys evolution in the Eastern Kunlun Orogenic Belt,Northern Tibetan Plateau 被引量:1
9
作者 Xinming Zhang Xu Zhao +7 位作者 Lebing Fu Yanjun Li Andreas Kamradt M.Santosh Chongwen Xu Xiaokun Huang Gregor Borg Junhao Wei 《Geoscience Frontiers》 SCIE CAS CSCD 2023年第6期286-306,共21页
The Eastern Kunlun Orogenic Belt(EKOB)in the Northern Tibet Plateau hosts a wide variety of metal deposits related to the Late Paleozoic to Mesozoic magmatism.In this study,we investigate the spatiotemporal distributi... The Eastern Kunlun Orogenic Belt(EKOB)in the Northern Tibet Plateau hosts a wide variety of metal deposits related to the Late Paleozoic to Mesozoic magmatism.In this study,we investigate the spatiotemporal distribution of the Late Paleozoic to Mesozoic granitic rocks and associated metal deposits in the EKOB and provide a comprehensive compilation of the geochronological,geochemical and isotopic data on these rocks.We compute regional zircon Hf isotope and crustal thickness maps from the data,based on which a comprehensive model is proposed involving subduction(ca.270–240 Ma),continental collision(ca.240–224 Ma),and post-collisional extension(ca.224–200 Ma)for the Late Paleozoic to Mesozoic Paleo-Tethys evolution in the EKOB.Zircon Hf isotopic and crustal thickness mapping of Late Paleozoic to Mesozoic magmatic rocks was carried out to evaluate their spatio-temporal and genetic links with the regional metallogeny.The polymetallic Fe-skarn and porphyry Cu(Mo)deposits in the EKOB are located above the Moho uplift region,featuring a comparatively thin crust.Granites associated with porphyry Cu(Mo)and polymetallic Fe skarn mineralization are commonly characterized by highε_(Hf)(t)and younger T_(DM)cvalues,whereas granite related to Cu-Mo-Sn skarn deposits exhibit more variableε_(Hf)(t)values,T_(DM)c ages,and the crust thickness,which suggest that more crustal materials contributed to the formation of Cu-Mo-Sn skarn deposits than those for porphyry Cu(Mo)and polymetallic Fe skarn mineralization.In contrast,vein-type Au deposits are located primarily where the Moho surface displays a depression,i.e.,where the continental crust is relatively thick.The magmatic rocks associated with Au mineralization are characterized by lowε_(Hf)(t)and high T_(DM)cvalues,representing reworked ancient crustal components,similar to those associated with porphyry Mo and epithermal Ag-Pb-Zn-(Au)deposits.Our study indicates that the emplacement of magmatic-hydrothermal deposits was controlled by the crustal structure and magma sources. 展开更多
关键词 Hf-isotopic mapping Crustal thickness METALLOGENY Tectonic evolution Crustal architecture Eastern kunlun orogenic belt
原文传递
Discovery of Paleogene palynological assemblages from the Wanbaogou Group-complex in western part of the Eastern Kunlun orogenic belt and its geological significance 被引量:8
10
作者 GUO Xianpu WANG Naiwen +2 位作者 DING Xiaozhong ZHAO Min WANG Daning 《Science China Earth Sciences》 SCIE EI CAS 2006年第4期358-367,共10页
Wanbaogou Group-complex is a suit of melange aggregation of the EasternKunlun orogenic belt, which is divided into two parts, i.e. the exotic blocks and the matrix strata.Based on stromatolite fossils yielded in the e... Wanbaogou Group-complex is a suit of melange aggregation of the EasternKunlun orogenic belt, which is divided into two parts, i.e. the exotic blocks and the matrix strata.Based on stromatolite fossils yielded in the exotic blocks, the age of this group-complex was oncedefined to the Precambrian. Recently, two Paleogene palynological assemblages have been found insamples from the matrix strata of the Upper Part in this group-complex by the authors: in ascendingorder, the Al-nipollenites-Quercoidites assemblage of Late Eocene and theCaryapollenites-Pinuspollenites assemblage of Early Oligocene. Those results show that the matrixstrata of this melange were mainly formed in Paleogene, and the event causing mixture should be aHimalayan Movement Phase. This paper is designed to provide some detailed evidence for determiningthe age of the matrix strata in this group-complex based upon study at the Kunlunqiao Section, whichwould be of important geological significance for further understanding this group-complex as asuit of melange aggregation and establishing or improving the stratigraphic framework of the studiedregion. The new finding will certainly benefit from now on the investigation on geotectonic andsedimentary evolution of Eastern Kunlun. 展开更多
关键词 wanbaogou group-complex PALEOGENE palynological assemblages melangeaggregation the eastern kunlun orogenic belt
原文传递
Discovery of Jinning Cycle Magmatism in Eastern Part of Eastern Kunlun Orogenic Belt and Its Significance 被引量:1
11
作者 Zhu Yunhai Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China Pan Yuanming Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada Zhang Kexin Faculty of Earth Sciences, China University of G 《Journal of Earth Science》 SCIE CAS CSCD 2000年第3期134-139,共6页
From the isotopic dating study of gneissic granodiorite, the authors discovered magmatism of the Jinning cycle. Intrusive rocks were formed in the Neoproterozoic, whose Pb Pb ages range from (913±4) Ma to (1 01... From the isotopic dating study of gneissic granodiorite, the authors discovered magmatism of the Jinning cycle. Intrusive rocks were formed in the Neoproterozoic, whose Pb Pb ages range from (913±4) Ma to (1 011±4) Ma and U Pb concordia age is (703±15) Ma. The tectonic settings of the rocks are volcanic arc or syn collision. After the formation of the intrusive rocks, these rocks also experienced reconstruction of Caledonian metamorphism. Based on the Ar Ar dating of metamorphic mineral of muscovite, the metamorphic time is determined to range from (386.8±0.8) Ma to (389.44±3.70) Ma. 展开更多
关键词 Jinning cycle MAGMATISM Eastern kunlun orogenic belt Qinghai Province.
下载PDF
Petrogenesis and tectonic implications of Late Triassic granitoids in the Alananshan,East Kunlun belt:evidence from geochemistry,geochronology,and zircon Hf isotopic compositions 被引量:1
12
作者 Zhen Xi Huan Li +2 位作者 Safiyanu Muhammad Elatikpo Guangming Gao Decheng Ma 《Acta Geochimica》 EI CAS CSCD 2022年第6期947-967,共21页
The Qimantag in the East Kunlun Orogenic Belt has widespread Triassic magmatic rocks that have received scant attention,with an unresolved issue relating to its petrogenesis and geodynamics.In this paper,we used zirco... The Qimantag in the East Kunlun Orogenic Belt has widespread Triassic magmatic rocks that have received scant attention,with an unresolved issue relating to its petrogenesis and geodynamics.In this paper,we used zircon U-Pb-Hf isotopes and whole-rock geochemistry to trace the petrogenesis and tectonic settings of the moyite and monzogranite from the Qimantag Alananshan,East Kunlun.The moyite and monzogranite are silicic(SiO_(2-)~69.9-76.41%),highly alkali(Na_(2)O+K_(2)O~7.29 to8.96 wt.%),with Mg^(#)about 10.4-30.34,indicative of a high-K calc-alkaline rock series.The rare earth element patterns diagram is right-leaning,with a negative Eu anomaly(δEu=0.31-0.68).They are enriched in Rb,K,and light rare earth elements but depleted in Nb,Ta,and Ti,with abundant amphibole,typical of I-type granites.U-Pb on zircon constrained the emplacement of the moyite at 223.9±2.6 Ma and monzogranite at 226.9±2.9 Ma.TheεHf(t)values range from-2.8 to+0.1 except for one outlier value of-7.0,corresponding two-stage model age of 1249-1437 Ma.Our combined geochemical and isotopic results indicate that the moyite and monzogranite were derived from partial melting of the lower thicken crust with the contribution from the older basement materials.These rocks formed in a post-collision setting that is transitional between compressive collision and extension orogeny. 展开更多
关键词 I-type granite Petrogeochemistry Triassic magmatic rocks Hf isotope East kunlun orogenic belt
下载PDF
Constraints of molybdenite Re-Os and scheelite Sm-Nd ages on mineralization time of the Kukaazi Pb-Zn-Cu-W deposit, Western Kunlun, NW China 被引量:2
13
作者 Chengbiao Leng Yuhui Wang +3 位作者 Xingchun Zhang Jianfeng Gao Wei Zhang Xinying Xu 《Acta Geochimica》 EI CAS CSCD 2018年第1期47-59,共13页
The Kukaazi Pb-Zn-Cu-W polymetallic deposit, located in the Western Kunlun orogenic belt, is a newly discovered skarn-type deposit. Ore bodies mainly occur in the forms of lenses and veins along beddings of the Mesopr... The Kukaazi Pb-Zn-Cu-W polymetallic deposit, located in the Western Kunlun orogenic belt, is a newly discovered skarn-type deposit. Ore bodies mainly occur in the forms of lenses and veins along beddings of the Mesoproterozoic metamorphic rocks. Three ore blocks, KⅠ,KⅡ, and KⅢ, have been outlined in different parts of the Kukaazi deposit in terms of mineral assemblages. The KⅠ ore block is mainly composed of chalcopyrite, scheelite,pyrrhotite, sphalerite, galena and minor pyrite, arsenopyrite,and molybdenite, whereas the other two ore blocks are made up of galena, sphalerite, magnetite and minor arsenopyrite and pyrite. In this study, we obtained a molybdenite isochron Re–Os age of 450.5 ± 6.4 Ma(2σ,MSWD = 0.057) and a scheelite Sm–Nd isochron age of 426 ± 59 Ma(2σ, MSWD = 0.49) for the KⅠ ore block.They are broadly comparable to the ages of granitoid in the region. Scheelite grains from the KⅠ ore block contain high abundances of rare earth elements(REE, 42.0–95.7 ppm)and are enriched in light REE compared to heavy REE, with negative Eu anomalies(δEu = 0.13–0.55). They display similar REE patterns and Sm/Nd ratios to those of the coeval granitoids in the region. Moreover, they also have similar Sr and Nd isotopes [ ^(87)Sr/ ^(86)Sr = 0.7107–0.7118;ε_(Nd)(t) =-4.1 to-4.0] to those of such granitoids, implying that the tungsten-bearing fluids in the Kukaazi deposit probably originate from the granitic magmas. Our results first defined that the Early Paleozoic granitoids could lead to economic Mo–W–(Cu) mineralization at some favorable districts in the Western Kunlun orogenic belt and could be prospecting exploration targets. 展开更多
关键词 Molybdenite Re-Os Scheelite Sm–Nd REE Kukaazi Pb-Zn-Cu-W polymetallic deposit Western kunlun orogenic belt
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部