The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Ol...The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Oligocene-Quaternary supra-salt sequence. The salt sequence is composed mainly of light grey halite, gypsum, marl and brown elastics. A variety of salt-related structures have developed in the Kuqa foreland fold belt, in which the most fascinating structures are salt nappe complex. Based on field observation, seismic interpretation and drilling data, a large-scale salt nappe complex has been identified. It trends approximately east-west for over 200 km and occurs along the west Qiulitag Mountains. Its thrusting displacement is over 30 km. The salt nappe complex appears as an arcuate zone projecting southwestwards along the leading edge of the Kuqa foreland fold belt. The major thrust fault is developed along the Paleocene-Eocene salt beds. The allochthonous nappes comprise large north-dipping faulting monoclines which are made up of Paleocene-Pliocene sediments. Geological analysis and cross-section restoration revealed that the salt nappes were mainly formed at the late Himalayan stage (c.a. 1.64 Ma BP) and have been active until the present day. Because of inhomogeneous thrusting, a great difference may exist in thrust displacement, thrust occurrence, superimposition of allochthonous and autochthonous sequences and the development of the salt-related structures, which indicates the segmentation along the salt nappes. Regional compression, gravitational gliding and spreading controlled the formation and evolution of the salt nappe complex in the Kuqa foreland fold belt.展开更多
Taking the Paleogene salt strata in the west of Kuqa foreland thrust belt as study object, the deformation features of salt structure in the compression direction and perpendicular to the compression direction were ex...Taking the Paleogene salt strata in the west of Kuqa foreland thrust belt as study object, the deformation features of salt structure in the compression direction and perpendicular to the compression direction were examined to find out the control factors and formation mechanisms of the salt structures. By using the three-dimensional discrete element numerical simulation method, the formation mechanisms of typical salt structures of western Kuqa foreland thrust belt in Keshen and Dabei work areas were comprehensively analyzed. The simulation results show that the salt deformation in Keshen and Dabei work areas is of forward spread type, with deformation concentrated in the piedmont zone;the salt deformation is affected by the early uplift near the compression end, pre-existing basement faults, synsedimentary process and the initial salt depocenter;in the direction perpendicular to the compression direction, salt rocks near the compression end have strong lateral mobility with the velocity component moving towards the middle part, and the closer to the middle, the larger the velocity will be, so that salt rocks will aggregate towards the middle and deform intensely, forming complex folds and separation of salt structures from salt source, and local outcrop with thrust faults. Compared with 2 D simulation, 3 D simulation can analyze salt structures in the principal stress direction and direction perpendicular to the principal stress, give us a full view of the formation mechanisms of salt structures, and guide the exploration of oil and gas reservoirs related to salt structures.展开更多
Well Zhongqiu 1 obtained highly productive oil-gas stream in the footwall of Zhongqiu structure, marking the strategic breakthrough of Qiulitag structural belt in the Tarim Basin. However, the oil and gas sources in Z...Well Zhongqiu 1 obtained highly productive oil-gas stream in the footwall of Zhongqiu structure, marking the strategic breakthrough of Qiulitag structural belt in the Tarim Basin. However, the oil and gas sources in Zhongqiu structural belt and the reservoir formation process in Zhongqiu 1 trap remain unclear, so study on these issues may provide important basis for the next step of oil and gas exploration and deployment in Qiulitage structural belt. In this study, a systematic correlation of oil and gas source in Well Zhongqiu 1 has been carried out. The oil in Well Zhongqiu 1 is derived from Triassic lacustrine mudstone, while the gas is a typical coal-derived gas and mainly from Jurassic coal measures. The oil charging in Well Zhongqiu 1 mainly took place during the sedimentary period from Jidike Formation to Kangcun Formation in Neogene, and the oil was mainly contributed by Triassic source rock;large-scale natural gas charging occurred in the sedimentary period of Kuqa Formation in Neogene, and the coal-derived gas generated in the late Jurassic caused large-scale gas invasion to the early Triassic crude oil reservoirs. The Zhongqiu 1 trap was formed earlier than or at the same period as the hydrocarbon generation and expulsion period of Triassic-Jurassic source rocks. Active faults provided paths for hydrocarbon migration. The source rocks-faults-traps matched well in time and space. Traps in the footwall of the Zhongqiu structural fault have similar reservoir-forming conditions with the Zhongqiu 1 trap, so they are favorable targets in the next step of exploration.展开更多
Based on overview for mechanism of abnormaloverpressure generation in sedimentary basins, an insightdiscussion is made by the authors for the distribution, fea-tures and generation mechanisms of abnormal overpressurei...Based on overview for mechanism of abnormaloverpressure generation in sedimentary basins, an insightdiscussion is made by the authors for the distribution, fea-tures and generation mechanisms of abnormal overpressurein the Kuqa foreland thrust belt. The abnormal overpressurein the Kelasu structure zone west to the Kuqa forelandthrust belt was primarily distributed in Eogene to lowerCretaceous formations; structural compression and struc-tural emplacement as well as the containment of Eogenegyps-salt formation constituted the main mechanisms for thegeneration of abnormal overpressure. The abnormal over-pressure zone in the eastern Yiqikelike structure zone wasdistributed primarily in lower Jurassic Ahe Group, resultingfrom hydrocarbon generation as well as structural stressother than from under-compaction. Various distributionsand generating mechanisms have different impacts upon theformation of oil and gas reservoirs. K-E reservoir in the Ke-lasu zone is an allochthonous abnormal overpressure system.One of the conditions for reservoir accumulation is the mi-gration of hydrocarbon (T-J hydrocarbon source rock) alongthe fault up to K-E reservoir and accumulated into reservoir.And this migration process was controlled by the abnormaloverpressure system in K-E reservoir. The confined abnor-mal overpressure system in the Yiqikelike structure zoneconstituted the main cause for the poor developing of dis-solved porosity in T-J reservoir, resulting in poor physicalproperty of reservoir. The poor physical property of T-J res-ervoir of Yinan 2 structure was the main cause for the ab-sence of oil accumulation, but the presence of natural gasreservoir in the structure.展开更多
Based on the analyses of generation, migration and accumulation of oil and gas in the structures of Kela 1, Kela 2 and Kela 3 in Kasangtuokai anticlinal belt using a series of geological and geochemical evidence, this...Based on the analyses of generation, migration and accumulation of oil and gas in the structures of Kela 1, Kela 2 and Kela 3 in Kasangtuokai anticlinal belt using a series of geological and geochemical evidence, this paper proposes that the rapid rate of hydrocarbon generation, main drain path for over-pressured fluid flow and converging conduit system are indispensable conditions for the rapid, late-stage gas accumulation in the Kelasu thrust belt in the Kuqa depression. Due to structural over-lapping and the resultant rapid burial, the maturity of the source rocks had been increased rapidly from 1.3 to 2.5% Ro within 2.3 Ma, with an average rate of Ro increase up to 0.539% Ro/Ma. The rapid matura-tion of the source rocks had provided sufficient gases for late-stage gas accumulation. The kelasu structural belt has a variety of faults, but only the fault that related with fault propagation fold and cut through the gypsiferous mudstone cap could act as the main path for overpressured fluid release and then for fast gas accumulation in low fluid potential area. All the evidence from surface structure map, seismic profile explanation, authigenic kaolinite and reservoir property demonstrates that the main drain path related with faults for overpressured fluid and the converging conduit system are the key point for the formation of the giant Kela 2 gas field. By contrast, the Kela 1 and Kela 3 structures lo-cated on both sides of Kela 2 structure, are not favourable for gas accumulation due to lacking con-verging conduit system.展开更多
The Baicheng (拜城) piggy-back basin was part of the intracontinental foreland basin system of southern Tianshan (天山) Mountains. It was formed on a thrust-and-fold belt induced by Mio-Pliocene collision between ...The Baicheng (拜城) piggy-back basin was part of the intracontinental foreland basin system of southern Tianshan (天山) Mountains. It was formed on a thrust-and-fold belt induced by Mio-Pliocene collision between southern Tianshan Mountains and Tarim craton that controlled the thick synorogenic basin fills. Sedimentological analysis and a restored cross-section based on seismic data and field studies revealed three tectono-depositional sequences of synorogenic basin fills. (1) The Lower Miocene sequence (Jidike (吉迪克 ) Formation) was formed under alluvial-braided river-lacustrine environments, in response to geodynamic changes of the Kuqa (库车) fold and thrust belt from the embryonic foreland to a foredeep in the course of orogenic loading period. (2) The Upper Miocene sequence (Kangcun (康村) Formation) was developed in fluvial-delta and lacustrine environments, within a foredeep due to orogenic thrust. (3) The Pliocene sequence (Kuqa Formation) was formed in the Baicheng piggy-back basin that became a wedge-top depozone, thrusting in the Qiulitagh (秋里塔格) thrust belt that propagated progressively southward to the Yaken (牙肯) thrust belt.展开更多
基金This research received financial supports from the National Natural Science Foundation of China(grant 40172076)the National Major Fundamental Research and Development Project(grant G1999043305)the National Key Project of the Ninth Five—Year Plan(grant 99—1111)
文摘The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Oligocene-Quaternary supra-salt sequence. The salt sequence is composed mainly of light grey halite, gypsum, marl and brown elastics. A variety of salt-related structures have developed in the Kuqa foreland fold belt, in which the most fascinating structures are salt nappe complex. Based on field observation, seismic interpretation and drilling data, a large-scale salt nappe complex has been identified. It trends approximately east-west for over 200 km and occurs along the west Qiulitag Mountains. Its thrusting displacement is over 30 km. The salt nappe complex appears as an arcuate zone projecting southwestwards along the leading edge of the Kuqa foreland fold belt. The major thrust fault is developed along the Paleocene-Eocene salt beds. The allochthonous nappes comprise large north-dipping faulting monoclines which are made up of Paleocene-Pliocene sediments. Geological analysis and cross-section restoration revealed that the salt nappes were mainly formed at the late Himalayan stage (c.a. 1.64 Ma BP) and have been active until the present day. Because of inhomogeneous thrusting, a great difference may exist in thrust displacement, thrust occurrence, superimposition of allochthonous and autochthonous sequences and the development of the salt-related structures, which indicates the segmentation along the salt nappes. Regional compression, gravitational gliding and spreading controlled the formation and evolution of the salt nappe complex in the Kuqa foreland fold belt.
基金Supported by the China National Science and Technology Major Project(2016ZX05033002,2016ZX05033001).
文摘Taking the Paleogene salt strata in the west of Kuqa foreland thrust belt as study object, the deformation features of salt structure in the compression direction and perpendicular to the compression direction were examined to find out the control factors and formation mechanisms of the salt structures. By using the three-dimensional discrete element numerical simulation method, the formation mechanisms of typical salt structures of western Kuqa foreland thrust belt in Keshen and Dabei work areas were comprehensively analyzed. The simulation results show that the salt deformation in Keshen and Dabei work areas is of forward spread type, with deformation concentrated in the piedmont zone;the salt deformation is affected by the early uplift near the compression end, pre-existing basement faults, synsedimentary process and the initial salt depocenter;in the direction perpendicular to the compression direction, salt rocks near the compression end have strong lateral mobility with the velocity component moving towards the middle part, and the closer to the middle, the larger the velocity will be, so that salt rocks will aggregate towards the middle and deform intensely, forming complex folds and separation of salt structures from salt source, and local outcrop with thrust faults. Compared with 2 D simulation, 3 D simulation can analyze salt structures in the principal stress direction and direction perpendicular to the principal stress, give us a full view of the formation mechanisms of salt structures, and guide the exploration of oil and gas reservoirs related to salt structures.
基金Supported by the China National Science and Technology Major Project(2016ZX05007-003)the National Natural Science Foundation of China(41802138)
文摘Well Zhongqiu 1 obtained highly productive oil-gas stream in the footwall of Zhongqiu structure, marking the strategic breakthrough of Qiulitag structural belt in the Tarim Basin. However, the oil and gas sources in Zhongqiu structural belt and the reservoir formation process in Zhongqiu 1 trap remain unclear, so study on these issues may provide important basis for the next step of oil and gas exploration and deployment in Qiulitage structural belt. In this study, a systematic correlation of oil and gas source in Well Zhongqiu 1 has been carried out. The oil in Well Zhongqiu 1 is derived from Triassic lacustrine mudstone, while the gas is a typical coal-derived gas and mainly from Jurassic coal measures. The oil charging in Well Zhongqiu 1 mainly took place during the sedimentary period from Jidike Formation to Kangcun Formation in Neogene, and the oil was mainly contributed by Triassic source rock;large-scale natural gas charging occurred in the sedimentary period of Kuqa Formation in Neogene, and the coal-derived gas generated in the late Jurassic caused large-scale gas invasion to the early Triassic crude oil reservoirs. The Zhongqiu 1 trap was formed earlier than or at the same period as the hydrocarbon generation and expulsion period of Triassic-Jurassic source rocks. Active faults provided paths for hydrocarbon migration. The source rocks-faults-traps matched well in time and space. Traps in the footwall of the Zhongqiu structural fault have similar reservoir-forming conditions with the Zhongqiu 1 trap, so they are favorable targets in the next step of exploration.
文摘Based on overview for mechanism of abnormaloverpressure generation in sedimentary basins, an insightdiscussion is made by the authors for the distribution, fea-tures and generation mechanisms of abnormal overpressurein the Kuqa foreland thrust belt. The abnormal overpressurein the Kelasu structure zone west to the Kuqa forelandthrust belt was primarily distributed in Eogene to lowerCretaceous formations; structural compression and struc-tural emplacement as well as the containment of Eogenegyps-salt formation constituted the main mechanisms for thegeneration of abnormal overpressure. The abnormal over-pressure zone in the eastern Yiqikelike structure zone wasdistributed primarily in lower Jurassic Ahe Group, resultingfrom hydrocarbon generation as well as structural stressother than from under-compaction. Various distributionsand generating mechanisms have different impacts upon theformation of oil and gas reservoirs. K-E reservoir in the Ke-lasu zone is an allochthonous abnormal overpressure system.One of the conditions for reservoir accumulation is the mi-gration of hydrocarbon (T-J hydrocarbon source rock) alongthe fault up to K-E reservoir and accumulated into reservoir.And this migration process was controlled by the abnormaloverpressure system in K-E reservoir. The confined abnor-mal overpressure system in the Yiqikelike structure zoneconstituted the main cause for the poor developing of dis-solved porosity in T-J reservoir, resulting in poor physicalproperty of reservoir. The poor physical property of T-J res-ervoir of Yinan 2 structure was the main cause for the ab-sence of oil accumulation, but the presence of natural gasreservoir in the structure.
基金the 973 Project (Grant No. 2001CB209103)the National Natural Science Foundation of China (Grant No. 42038059)the Key Science Research Project of Chinese Ministry of Education (Grant No. 10419)
文摘Based on the analyses of generation, migration and accumulation of oil and gas in the structures of Kela 1, Kela 2 and Kela 3 in Kasangtuokai anticlinal belt using a series of geological and geochemical evidence, this paper proposes that the rapid rate of hydrocarbon generation, main drain path for over-pressured fluid flow and converging conduit system are indispensable conditions for the rapid, late-stage gas accumulation in the Kelasu thrust belt in the Kuqa depression. Due to structural over-lapping and the resultant rapid burial, the maturity of the source rocks had been increased rapidly from 1.3 to 2.5% Ro within 2.3 Ma, with an average rate of Ro increase up to 0.539% Ro/Ma. The rapid matura-tion of the source rocks had provided sufficient gases for late-stage gas accumulation. The kelasu structural belt has a variety of faults, but only the fault that related with fault propagation fold and cut through the gypsiferous mudstone cap could act as the main path for overpressured fluid release and then for fast gas accumulation in low fluid potential area. All the evidence from surface structure map, seismic profile explanation, authigenic kaolinite and reservoir property demonstrates that the main drain path related with faults for overpressured fluid and the converging conduit system are the key point for the formation of the giant Kela 2 gas field. By contrast, the Kela 1 and Kela 3 structures lo-cated on both sides of Kela 2 structure, are not favourable for gas accumulation due to lacking con-verging conduit system.
基金supported by the State Key Scientific and Technological Research Project (No. 2001BA605A-02-03-03-04)
文摘The Baicheng (拜城) piggy-back basin was part of the intracontinental foreland basin system of southern Tianshan (天山) Mountains. It was formed on a thrust-and-fold belt induced by Mio-Pliocene collision between southern Tianshan Mountains and Tarim craton that controlled the thick synorogenic basin fills. Sedimentological analysis and a restored cross-section based on seismic data and field studies revealed three tectono-depositional sequences of synorogenic basin fills. (1) The Lower Miocene sequence (Jidike (吉迪克 ) Formation) was formed under alluvial-braided river-lacustrine environments, in response to geodynamic changes of the Kuqa (库车) fold and thrust belt from the embryonic foreland to a foredeep in the course of orogenic loading period. (2) The Upper Miocene sequence (Kangcun (康村) Formation) was developed in fluvial-delta and lacustrine environments, within a foredeep due to orogenic thrust. (3) The Pliocene sequence (Kuqa Formation) was formed in the Baicheng piggy-back basin that became a wedge-top depozone, thrusting in the Qiulitagh (秋里塔格) thrust belt that propagated progressively southward to the Yaken (牙肯) thrust belt.