Let X be a Banach space with a Schauder basis (en), and let Ф(I) =∑^∞n=1 en ft fn(t)dt be a finitely additive interval measure on the unit interval [0, 1], where the integrals are taken in the sense of Hensto...Let X be a Banach space with a Schauder basis (en), and let Ф(I) =∑^∞n=1 en ft fn(t)dt be a finitely additive interval measure on the unit interval [0, 1], where the integrals are taken in the sense of Henstock-Kurzweil. Necessary and sufficient conditions are given for Ф to be the indefinite integral of a Henstock Kurzweil-Pettis (or Henstock, or variational Henstock) integrable function f : [0, 1] → X.展开更多
基金Supported by the MURST of Italy(Prin2008)(Grant No.2008EEZ4N7)the Polish Ministry of Science and Higher Education of Poland(Grant No.N N201416139)
文摘Let X be a Banach space with a Schauder basis (en), and let Ф(I) =∑^∞n=1 en ft fn(t)dt be a finitely additive interval measure on the unit interval [0, 1], where the integrals are taken in the sense of Henstock-Kurzweil. Necessary and sufficient conditions are given for Ф to be the indefinite integral of a Henstock Kurzweil-Pettis (or Henstock, or variational Henstock) integrable function f : [0, 1] → X.