An important factor in the emergence and progre sion of osteosarcoma(OS)is the dysregulated expression of microRNAs(miRNAs).Transcription factor 7-like 1(TCF7LI),a member of the T cell factor/lymphoid enhancer factor(...An important factor in the emergence and progre sion of osteosarcoma(OS)is the dysregulated expression of microRNAs(miRNAs).Transcription factor 7-like 1(TCF7LI),a member of the T cell factor/lymphoid enhancer factor(TCF/LEF)transcription factor family,interacts with the Wnt signaling pathway regulator β-catenin and acts as a DNA-specific binding protein.This study sought to elucidate the impact of the interaction between miR 3293p and TCF7L1 on.the growth and apoptosis of OS and analyze the regulatory expression relationship between miRNA and mRNA in osteosarcoma cells using a variety of approaches.MiR329-3p was significantly downregulated,while TCF7L1 was considerably up-regulated in all examined OS cell lines.Additionally,a clinical comparison study was performed using the TCGA database.Subsequently,the regulatory relationship between miR-329-3p and TCF7L1 on the proliferation and apoptosis of OS cells was verified through in vitro and in vivo experiments.When miR 329-3p was transfected into the OS cell line,the expression of TCF7L1 decreased,the proliferation of OS cells was inhibited,the cytoskeleton disintegrated,and the nucleus condensed to fom apoptotic bodies.The expression of proteins that indicate apoptosis increased simultaneously.The cell cycle was arrested in the G0/G1 phase,and the G1/S transition was blocked.The introduction of miR 3293p also inhibited downstream Cyclin D1 of the Wnt pathway.Xenograf experiments indicated that the overexpression of miR-329-3p signi ficanly inhibited the growth of OS xenografts in nude mice,and the expression of TCF7L1 and C-Myc in tumor tssues decreased.MiR 329-3p was significantly reduced in OS cells and played a suppressive role in tumorigenesis and proliferation by targeting TCF7L1 both in vitro and in vivo.Osteosarcoma cell cycle arrest and pathway inhibition were observed upon the regulation of TCF7LI by miR 3293p.Summarizing these results,it can be inferred that miR.3293p exerts anticancer efects in osteosarcoma by inhibiting TCF7L1.展开更多
In this contribution, one-pot tandem conversion of fructose into biofuel components, including 5-ethoxymethylfurfural(EMF), 2,5-(bis(ethoxymethyl)furan(BEMF) and ethyl levulinate(EL), was performed in an in-s...In this contribution, one-pot tandem conversion of fructose into biofuel components, including 5-ethoxymethylfurfural(EMF), 2,5-(bis(ethoxymethyl)furan(BEMF) and ethyl levulinate(EL), was performed in an in-situ generated catalyst system through consecutive dehydration, etherification, and transfer hydrogenation. Specifically, ZrOCl2·8H2O was in-situ decomposed into HCl and ZrO(OH)2 in ethanol, which effectively catalyzed the dehydration/etherification of fructose to 5-ethoxymethylfurfural(EMF) and subsequent reductive etherification of EMF using ethanol as H-donor, respectively. EMF, BEMF and EL were detected as the main products, and total yield of detectable products of up to 65.4% was obtained at 200 ℃ in only 2 h.展开更多
基金The Fund of National Cancer Center Research and Development(26-A-4),The Grants-in-Aid for Scientific Research(Grant Nos.15K10451,16K10866 and 16K20063)from Japan Society for the Promotion of Science.
文摘An important factor in the emergence and progre sion of osteosarcoma(OS)is the dysregulated expression of microRNAs(miRNAs).Transcription factor 7-like 1(TCF7LI),a member of the T cell factor/lymphoid enhancer factor(TCF/LEF)transcription factor family,interacts with the Wnt signaling pathway regulator β-catenin and acts as a DNA-specific binding protein.This study sought to elucidate the impact of the interaction between miR 3293p and TCF7L1 on.the growth and apoptosis of OS and analyze the regulatory expression relationship between miRNA and mRNA in osteosarcoma cells using a variety of approaches.MiR329-3p was significantly downregulated,while TCF7L1 was considerably up-regulated in all examined OS cell lines.Additionally,a clinical comparison study was performed using the TCGA database.Subsequently,the regulatory relationship between miR-329-3p and TCF7L1 on the proliferation and apoptosis of OS cells was verified through in vitro and in vivo experiments.When miR 329-3p was transfected into the OS cell line,the expression of TCF7L1 decreased,the proliferation of OS cells was inhibited,the cytoskeleton disintegrated,and the nucleus condensed to fom apoptotic bodies.The expression of proteins that indicate apoptosis increased simultaneously.The cell cycle was arrested in the G0/G1 phase,and the G1/S transition was blocked.The introduction of miR 3293p also inhibited downstream Cyclin D1 of the Wnt pathway.Xenograf experiments indicated that the overexpression of miR-329-3p signi ficanly inhibited the growth of OS xenografts in nude mice,and the expression of TCF7L1 and C-Myc in tumor tssues decreased.MiR 329-3p was significantly reduced in OS cells and played a suppressive role in tumorigenesis and proliferation by targeting TCF7L1 both in vitro and in vivo.Osteosarcoma cell cycle arrest and pathway inhibition were observed upon the regulation of TCF7LI by miR 3293p.Summarizing these results,it can be inferred that miR.3293p exerts anticancer efects in osteosarcoma by inhibiting TCF7L1.
基金financial support from the National Natural Science Foundation of China (Grant Nos.21706223 21776234+7 种基金 21676223 21506177)the Fundamental Research Funds for the Central Universities (Grant Nos. 20720160087 20720160077)the Natural Science Foundation of Fujian Province of China (Grant Nos. 2016J01077 2015J05034 2014J01209)the Education Department of Fujian Province (Grant No. JZ160398)
文摘In this contribution, one-pot tandem conversion of fructose into biofuel components, including 5-ethoxymethylfurfural(EMF), 2,5-(bis(ethoxymethyl)furan(BEMF) and ethyl levulinate(EL), was performed in an in-situ generated catalyst system through consecutive dehydration, etherification, and transfer hydrogenation. Specifically, ZrOCl2·8H2O was in-situ decomposed into HCl and ZrO(OH)2 in ethanol, which effectively catalyzed the dehydration/etherification of fructose to 5-ethoxymethylfurfural(EMF) and subsequent reductive etherification of EMF using ethanol as H-donor, respectively. EMF, BEMF and EL were detected as the main products, and total yield of detectable products of up to 65.4% was obtained at 200 ℃ in only 2 h.