BACKGROUND Hepatocellular carcinoma(HCC)has been a pervasive malignancy throughout the world with elevated mortality.Efficient therapeutic targets are beneficial to treat and predict the disease.Currently,the exact mo...BACKGROUND Hepatocellular carcinoma(HCC)has been a pervasive malignancy throughout the world with elevated mortality.Efficient therapeutic targets are beneficial to treat and predict the disease.Currently,the exact molecular mechanisms leading to the progression of HCC are still unclear.Research has shown that the microRNA-142-3p level decreases in HCC,whereas bioinformatics analysis of the cancer genome atlas database shows the ASH1L expression increased among liver tumor tissues.In this paper,we will explore the effects and mechanisms of microRNA-142-3p and ASH1L affect the prognosis of HCC patients and HCC cell bioactivity,and the association between them.AIM To investigate the effects and mechanisms of microRNA-142-3p and ASH1L on the HCC cell bioactivity and prognosis of HCC patients.METHODS In this study,we grouped HCC patients according to their immunohistochemistry results of ASH1L with pathological tissues,and retrospectively analyzed the prognosis of HCC patients.Furthermore,explored the roles and mechanisms of microRNA-142-3p and ASH1L by cellular and animal experiments,which involved the following experimental methods:Immunohistochemical staining,western blot,quantitative real-time-polymerase chain reaction,flow cytometric analysis,tumor xenografts in nude mice,etc.The statistical methods involved in this study contained t-test,one-way analysis of variance,theχ^(2)test,the Kaplan-Meier approach and the log-rank test.RESULTS In this study,we found that HCC patients with high expression of ASH1L possess a more recurrence rate as well as a decreased overall survival rate.ASH1L promotes the tumorigenicity of HCC and microRNA-142-3p exhibits reduced expression in HCC tissues and interacts with ASH1L through targeting the ASH1L 3′untranslated region.Furthermore,microRNA-142-3p promotes apoptosis and inhibits proliferation,invasion,and migration of HCC cell lines in vitro via ASH1L.For the exploration mechanism,we found ASH1L may promote an immunosuppressive microenvironment in HCC and ASH1L affects the expression of the cell junction protein zonula occludens-1,which is potentially relevant to the immune system.CONCLUSION Loss function of microRNA-142-3p induces cancer progression and immune evasion through upregulation of ASH1L in HCC.Both microRNA-142-3p and ASH1L can feature as new biomarker for HCC in the future.展开更多
To investigate the effects of L-tetrahydropalmatine (L-THP) on ener-gy metabolism, endothelin-1 (ET-1 ) and NO during acute cerebral ischemia-reperfusion of rats, 24 Wistar rats were randomly divided into four groups,...To investigate the effects of L-tetrahydropalmatine (L-THP) on ener-gy metabolism, endothelin-1 (ET-1 ) and NO during acute cerebral ischemia-reperfusion of rats, 24 Wistar rats were randomly divided into four groups, with 6rats in each group: sham-operation group, simple ischemia group, ischemia-reperfusion group and treatment group (L-THP group). Cerebral ATP, lactate,ET-1 and NO levels were measured in all groups. Our results showed that treat-ment with L-THP could increase cerebral ATP levels, but decrease cerebral lac-tate, ET-1 and NO concentrations during ischemia-reperfusion in the treatmentgroup. It is concluded that L-THP could improve cerebral energy metabolism and protect the injured brain tissue, the mechanism of which might be related to suppression of overproduction of ET-1 and NO.展开更多
To investigate the effects of L-Tetrahydropalmatine (L-THP ) on neuron apoptosis during acute cerebral ischemia-reperfusion of rats and explore the effects of heat shock protein (HSP) on neuron apoptosis, Wistar rats ...To investigate the effects of L-Tetrahydropalmatine (L-THP ) on neuron apoptosis during acute cerebral ischemia-reperfusion of rats and explore the effects of heat shock protein (HSP) on neuron apoptosis, Wistar rats were randomly divided into 3 groups: normal group, ischemia- reperfusion group and treatment group. The condition of neuron apoptosis, the survival state of neuron, pathological changes under an electron microscope and the number of HSP70 positive cells were measured in all groups. Results showed that the apoptosis neuron number was increased obviously at the 24th h during reperfusion and was further increased at the 48th h, the 72th h. While the number of survival neurons was decreased gradually with the prolongation of reperfusion time. Treatment with L-THP could decrease the apoptosis neuron number but increase the survival neuron number and the HSP70 positive cell number. Our study suggested that L-THP could decrease apoptosis and necrosis of neuron, up-regulate the expression of HSP70 and protect the cerebral ischemic injury.展开更多
To investigate the effects of L-Tetrahydropalmatine (L-THP) on the expressions of bcl-2, bax and neuronal apoptosis after cerebral ischemia and reperfusion, 60 Wistars rats were randomly divided into 3 groups: sham-op...To investigate the effects of L-Tetrahydropalmatine (L-THP) on the expressions of bcl-2, bax and neuronal apoptosis after cerebral ischemia and reperfusion, 60 Wistars rats were randomly divided into 3 groups: sham-operation group (group S, n = 20), ischemic-reperfusion group treated with saline (group I, n=20) and ischemia-reperfusion group treated with L-THP (group T, n=20) .The rat model of global cerebral ischemia and reperfusion was induced by Pulsinelli's four-vessel occlusion method. The expression of bcl-2 and bax mRNA was detected by in situ hybridization and reverse transcriptional polymerase chain reaction (RT-PCR). The number of apoptotic neurons was examined by terminal deoxynucleotidyl-transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) method. Compared with group S, the expression of bcl-2 and bax mRNA in group I was increased significantly (P<0.01), and the number of apoptotic neurons increased either (P< 0.01). After L-THP treatment, the expression of bcl-2 mRNA was up-regulated (P<0.01) and that of bax mRNA was down-regulated (P<0.01); the number of apoptotic neurons was decreased (P<0.01). Our results indicated that bcl-2 may suppress apoptosis and bax promote apoptosis after cerebral ischemia and reperfusion. L-THP could ameliorate cerebral ischemia and reperfusion damage by reducing the apoptosis through regulating bcl-2 and bax.展开更多
An important factor in the emergence and progre sion of osteosarcoma(OS)is the dysregulated expression of microRNAs(miRNAs).Transcription factor 7-like 1(TCF7LI),a member of the T cell factor/lymphoid enhancer factor(...An important factor in the emergence and progre sion of osteosarcoma(OS)is the dysregulated expression of microRNAs(miRNAs).Transcription factor 7-like 1(TCF7LI),a member of the T cell factor/lymphoid enhancer factor(TCF/LEF)transcription factor family,interacts with the Wnt signaling pathway regulator β-catenin and acts as a DNA-specific binding protein.This study sought to elucidate the impact of the interaction between miR 3293p and TCF7L1 on.the growth and apoptosis of OS and analyze the regulatory expression relationship between miRNA and mRNA in osteosarcoma cells using a variety of approaches.MiR329-3p was significantly downregulated,while TCF7L1 was considerably up-regulated in all examined OS cell lines.Additionally,a clinical comparison study was performed using the TCGA database.Subsequently,the regulatory relationship between miR-329-3p and TCF7L1 on the proliferation and apoptosis of OS cells was verified through in vitro and in vivo experiments.When miR 329-3p was transfected into the OS cell line,the expression of TCF7L1 decreased,the proliferation of OS cells was inhibited,the cytoskeleton disintegrated,and the nucleus condensed to fom apoptotic bodies.The expression of proteins that indicate apoptosis increased simultaneously.The cell cycle was arrested in the G0/G1 phase,and the G1/S transition was blocked.The introduction of miR 3293p also inhibited downstream Cyclin D1 of the Wnt pathway.Xenograf experiments indicated that the overexpression of miR-329-3p signi ficanly inhibited the growth of OS xenografts in nude mice,and the expression of TCF7L1 and C-Myc in tumor tssues decreased.MiR 329-3p was significantly reduced in OS cells and played a suppressive role in tumorigenesis and proliferation by targeting TCF7L1 both in vitro and in vivo.Osteosarcoma cell cycle arrest and pathway inhibition were observed upon the regulation of TCF7LI by miR 3293p.Summarizing these results,it can be inferred that miR.3293p exerts anticancer efects in osteosarcoma by inhibiting TCF7L1.展开更多
基金Supported by the Haihe Laboratory of Cell Ecosystem Innovation Fund,No.22HHXBJC00001the Key Discipline Special Project of Tianjin Municipal Health Commission,No.TJWJ2022XK016.
文摘BACKGROUND Hepatocellular carcinoma(HCC)has been a pervasive malignancy throughout the world with elevated mortality.Efficient therapeutic targets are beneficial to treat and predict the disease.Currently,the exact molecular mechanisms leading to the progression of HCC are still unclear.Research has shown that the microRNA-142-3p level decreases in HCC,whereas bioinformatics analysis of the cancer genome atlas database shows the ASH1L expression increased among liver tumor tissues.In this paper,we will explore the effects and mechanisms of microRNA-142-3p and ASH1L affect the prognosis of HCC patients and HCC cell bioactivity,and the association between them.AIM To investigate the effects and mechanisms of microRNA-142-3p and ASH1L on the HCC cell bioactivity and prognosis of HCC patients.METHODS In this study,we grouped HCC patients according to their immunohistochemistry results of ASH1L with pathological tissues,and retrospectively analyzed the prognosis of HCC patients.Furthermore,explored the roles and mechanisms of microRNA-142-3p and ASH1L by cellular and animal experiments,which involved the following experimental methods:Immunohistochemical staining,western blot,quantitative real-time-polymerase chain reaction,flow cytometric analysis,tumor xenografts in nude mice,etc.The statistical methods involved in this study contained t-test,one-way analysis of variance,theχ^(2)test,the Kaplan-Meier approach and the log-rank test.RESULTS In this study,we found that HCC patients with high expression of ASH1L possess a more recurrence rate as well as a decreased overall survival rate.ASH1L promotes the tumorigenicity of HCC and microRNA-142-3p exhibits reduced expression in HCC tissues and interacts with ASH1L through targeting the ASH1L 3′untranslated region.Furthermore,microRNA-142-3p promotes apoptosis and inhibits proliferation,invasion,and migration of HCC cell lines in vitro via ASH1L.For the exploration mechanism,we found ASH1L may promote an immunosuppressive microenvironment in HCC and ASH1L affects the expression of the cell junction protein zonula occludens-1,which is potentially relevant to the immune system.CONCLUSION Loss function of microRNA-142-3p induces cancer progression and immune evasion through upregulation of ASH1L in HCC.Both microRNA-142-3p and ASH1L can feature as new biomarker for HCC in the future.
文摘To investigate the effects of L-tetrahydropalmatine (L-THP) on ener-gy metabolism, endothelin-1 (ET-1 ) and NO during acute cerebral ischemia-reperfusion of rats, 24 Wistar rats were randomly divided into four groups, with 6rats in each group: sham-operation group, simple ischemia group, ischemia-reperfusion group and treatment group (L-THP group). Cerebral ATP, lactate,ET-1 and NO levels were measured in all groups. Our results showed that treat-ment with L-THP could increase cerebral ATP levels, but decrease cerebral lac-tate, ET-1 and NO concentrations during ischemia-reperfusion in the treatmentgroup. It is concluded that L-THP could improve cerebral energy metabolism and protect the injured brain tissue, the mechanism of which might be related to suppression of overproduction of ET-1 and NO.
文摘To investigate the effects of L-Tetrahydropalmatine (L-THP ) on neuron apoptosis during acute cerebral ischemia-reperfusion of rats and explore the effects of heat shock protein (HSP) on neuron apoptosis, Wistar rats were randomly divided into 3 groups: normal group, ischemia- reperfusion group and treatment group. The condition of neuron apoptosis, the survival state of neuron, pathological changes under an electron microscope and the number of HSP70 positive cells were measured in all groups. Results showed that the apoptosis neuron number was increased obviously at the 24th h during reperfusion and was further increased at the 48th h, the 72th h. While the number of survival neurons was decreased gradually with the prolongation of reperfusion time. Treatment with L-THP could decrease the apoptosis neuron number but increase the survival neuron number and the HSP70 positive cell number. Our study suggested that L-THP could decrease apoptosis and necrosis of neuron, up-regulate the expression of HSP70 and protect the cerebral ischemic injury.
文摘To investigate the effects of L-Tetrahydropalmatine (L-THP) on the expressions of bcl-2, bax and neuronal apoptosis after cerebral ischemia and reperfusion, 60 Wistars rats were randomly divided into 3 groups: sham-operation group (group S, n = 20), ischemic-reperfusion group treated with saline (group I, n=20) and ischemia-reperfusion group treated with L-THP (group T, n=20) .The rat model of global cerebral ischemia and reperfusion was induced by Pulsinelli's four-vessel occlusion method. The expression of bcl-2 and bax mRNA was detected by in situ hybridization and reverse transcriptional polymerase chain reaction (RT-PCR). The number of apoptotic neurons was examined by terminal deoxynucleotidyl-transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) method. Compared with group S, the expression of bcl-2 and bax mRNA in group I was increased significantly (P<0.01), and the number of apoptotic neurons increased either (P< 0.01). After L-THP treatment, the expression of bcl-2 mRNA was up-regulated (P<0.01) and that of bax mRNA was down-regulated (P<0.01); the number of apoptotic neurons was decreased (P<0.01). Our results indicated that bcl-2 may suppress apoptosis and bax promote apoptosis after cerebral ischemia and reperfusion. L-THP could ameliorate cerebral ischemia and reperfusion damage by reducing the apoptosis through regulating bcl-2 and bax.
基金The Fund of National Cancer Center Research and Development(26-A-4),The Grants-in-Aid for Scientific Research(Grant Nos.15K10451,16K10866 and 16K20063)from Japan Society for the Promotion of Science.
文摘An important factor in the emergence and progre sion of osteosarcoma(OS)is the dysregulated expression of microRNAs(miRNAs).Transcription factor 7-like 1(TCF7LI),a member of the T cell factor/lymphoid enhancer factor(TCF/LEF)transcription factor family,interacts with the Wnt signaling pathway regulator β-catenin and acts as a DNA-specific binding protein.This study sought to elucidate the impact of the interaction between miR 3293p and TCF7L1 on.the growth and apoptosis of OS and analyze the regulatory expression relationship between miRNA and mRNA in osteosarcoma cells using a variety of approaches.MiR329-3p was significantly downregulated,while TCF7L1 was considerably up-regulated in all examined OS cell lines.Additionally,a clinical comparison study was performed using the TCGA database.Subsequently,the regulatory relationship between miR-329-3p and TCF7L1 on the proliferation and apoptosis of OS cells was verified through in vitro and in vivo experiments.When miR 329-3p was transfected into the OS cell line,the expression of TCF7L1 decreased,the proliferation of OS cells was inhibited,the cytoskeleton disintegrated,and the nucleus condensed to fom apoptotic bodies.The expression of proteins that indicate apoptosis increased simultaneously.The cell cycle was arrested in the G0/G1 phase,and the G1/S transition was blocked.The introduction of miR 3293p also inhibited downstream Cyclin D1 of the Wnt pathway.Xenograf experiments indicated that the overexpression of miR-329-3p signi ficanly inhibited the growth of OS xenografts in nude mice,and the expression of TCF7L1 and C-Myc in tumor tssues decreased.MiR 329-3p was significantly reduced in OS cells and played a suppressive role in tumorigenesis and proliferation by targeting TCF7L1 both in vitro and in vivo.Osteosarcoma cell cycle arrest and pathway inhibition were observed upon the regulation of TCF7LI by miR 3293p.Summarizing these results,it can be inferred that miR.3293p exerts anticancer efects in osteosarcoma by inhibiting TCF7L1.