针对移动机器人的同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)问题,传统后端优化算法比较依赖于前端传感器构造位姿图,而且对于假阳性环形闭合约束鲁棒性较低。基于此,提出了一种鲁棒后端优化算法。利用因子图建立...针对移动机器人的同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)问题,传统后端优化算法比较依赖于前端传感器构造位姿图,而且对于假阳性环形闭合约束鲁棒性较低。基于此,提出了一种鲁棒后端优化算法。利用因子图建立SLAM的优化模型,在使用新的鲁棒代价函数基础上引入先验约束用于确认启用或关闭前端传递的环形闭合约束,从而使得后端拓扑图能够摒弃前端传递的假阳性环形闭合约束并朝向真实地图收敛,再利用L-M(Levenberg-Mar-quardt)算法进行优化使其收敛到真实地图。仿真结果表明,SLAM后端优化算法缩小了前端数据和后端优化之间的差距,满足移动机器人精确定位与建图的需求。展开更多
Power transformer outages have a considerable economic impact on the operation of an electrical network. Obtaining appropriate model for power transformer top oil temperature (TOT) prediction is an important topic for...Power transformer outages have a considerable economic impact on the operation of an electrical network. Obtaining appropriate model for power transformer top oil temperature (TOT) prediction is an important topic for dynamic and steady state loading of power transformers. There are many mathematical models which predict TOT. These mathematical models have many undefined coefficients which should be obtained from heat run test or fitting methods. In this paper, genetic algorithm (GA) and particle swarm optimization (PSO) are used to obtain these coefficients. Therefore, a code has been provided under MATLAB software. The effects of mentioned optimization methods will be studied on improvement of adequacy, consistency and accuracy of the model. In addition these methods will be compared with the Multiple-Linear Regression (M-L R) to illustrate the improvement of the model.展开更多
文摘针对移动机器人的同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)问题,传统后端优化算法比较依赖于前端传感器构造位姿图,而且对于假阳性环形闭合约束鲁棒性较低。基于此,提出了一种鲁棒后端优化算法。利用因子图建立SLAM的优化模型,在使用新的鲁棒代价函数基础上引入先验约束用于确认启用或关闭前端传递的环形闭合约束,从而使得后端拓扑图能够摒弃前端传递的假阳性环形闭合约束并朝向真实地图收敛,再利用L-M(Levenberg-Mar-quardt)算法进行优化使其收敛到真实地图。仿真结果表明,SLAM后端优化算法缩小了前端数据和后端优化之间的差距,满足移动机器人精确定位与建图的需求。
文摘Power transformer outages have a considerable economic impact on the operation of an electrical network. Obtaining appropriate model for power transformer top oil temperature (TOT) prediction is an important topic for dynamic and steady state loading of power transformers. There are many mathematical models which predict TOT. These mathematical models have many undefined coefficients which should be obtained from heat run test or fitting methods. In this paper, genetic algorithm (GA) and particle swarm optimization (PSO) are used to obtain these coefficients. Therefore, a code has been provided under MATLAB software. The effects of mentioned optimization methods will be studied on improvement of adequacy, consistency and accuracy of the model. In addition these methods will be compared with the Multiple-Linear Regression (M-L R) to illustrate the improvement of the model.