期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
L^p Approximation Capability of RBF Neural Networks 被引量:1
1
作者 Dong Nan Wei Wu +2 位作者 Jin Ling Long Yu Mei Ma Lin Jun Sun 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第9期1533-1540,共8页
L p approximation capability of radial basis function (RBF) neural networks is investigated. If g: R +1 → R 1 and $g(\parallel x\parallel _{R^n } )$g(\parallel x\parallel _{R^n } ) ∈ L loc p (R n ) with 1 ≤ p < ... L p approximation capability of radial basis function (RBF) neural networks is investigated. If g: R +1 → R 1 and $g(\parallel x\parallel _{R^n } )$g(\parallel x\parallel _{R^n } ) ∈ L loc p (R n ) with 1 ≤ p < ∞, then the RBF neural networks with g as the activation function can approximate any given function in L p (K) with any accuracy for any compact set K in R n , if and only if g(x) is not an even polynomial. 展开更多
关键词 neural networks radial basis function l p approximation capability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部