For monomer reactivity ratios study, the copolymerization of D,L-3-methylglycolide (MG) with glycolide (GA) or D,L-lactide (LA) was carried out in bulk to a certain low conversion in the presence of stannous octoate a...For monomer reactivity ratios study, the copolymerization of D,L-3-methylglycolide (MG) with glycolide (GA) or D,L-lactide (LA) was carried out in bulk to a certain low conversion in the presence of stannous octoate at 140 degrees C. The copolymer compositions were determined by H-1 NMR spectroscopy. The monomer reactivity ratios were evaluated by Fineman-Ross method, Kelen-Tudos method and linear least-squares method. The monomer reactivity ratios of D,L-3-methylglycolide and glycolide or D,L-lactide are r(mg)= 0.73, r(ga)= 1.47; r(mg)= 1.71, r(la)= 0.92, respectively.展开更多
[Objective] The aim of the study is to clone and analyze the gene encoding 14-3-3 protein from banana. [Method] Combined with PCR amplification, RACE (rapid amplification of cDNA ends) technique was employed to clone ...[Objective] The aim of the study is to clone and analyze the gene encoding 14-3-3 protein from banana. [Method] Combined with PCR amplification, RACE (rapid amplification of cDNA ends) technique was employed to clone 14-3-3 gene from banana; then the amplified sequence was sequenced and homologically analyzed. [Result] A new cDNA homologous with 14-3-3 protein genes were obtained by RT-PCR and RACE ( rapid amplification of cDNA ends ) approaches. The full length of this cDNA was 866 bp encoding 197 amino acids. Alignment of deduced amino acid sequence with those from other plants revealed that the cDNA shared high homology with 14-3-3 protein genes from other plants, and was designated as Musa acuminata 14-3-3 gene (Ma-14-3-3d). Phylogenetic analysis reveals that Ma-14-3-3d has closer genetic relationship with those from monocotyledon species than those from other species. [Conclusion] Ma-14-3-3d belongs to the same lineage of 14-3-3 from monocotyledon.展开更多
目的利用3D景深合成技术、显微偏光技术对茜草及其易混淆品进行鉴别,建立一种快速鉴别茜草的方法并提供相应的鉴别特征高清图。方法采用3D景深合成技术对茜草及其混淆品的表面及断面进行鉴别,并拍摄其微形态特征图。通过徒手切片法制作...目的利用3D景深合成技术、显微偏光技术对茜草及其易混淆品进行鉴别,建立一种快速鉴别茜草的方法并提供相应的鉴别特征高清图。方法采用3D景深合成技术对茜草及其混淆品的表面及断面进行鉴别,并拍摄其微形态特征图。通过徒手切片法制作其临时装片,并利用偏光技术对其针晶束及其它组织结构进行观察、鉴别,拍摄其正常光与偏光下的横切面特征高清图。结果茜草的混淆品主要有茜草茎埋在地下部分、大茜草Rubia magna P.G.Xiao、蓬子菜Galium verum L.两种,可以通过其表面的粗糙程度、木栓层细胞的形态、针晶束的密度以及木质部、木栓层、韧皮部的径向比例进行区分。结论采用3D景深合成技术、偏光技术能够对茜草及其混淆品进行区分,为茜草的鉴别提供了新的思路。该方法操作简便、制作快速、鉴别特征明显,非常适合现场快检。展开更多
Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured...Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, such as the high computational cost for improving model accuracy and the difficulty of inverting with topography. In this paper, we used the limited-memory quasi-Newton(L-BFGS) method with an unstructured finite-element grid to perform 3D MT inversions. This method avoids explicitly calculating Hessian matrices, which greatly reduces the memory requirements. After the first iteration, the approximate inverse Hessian matrix well approximates the true one, and the Newton step(set to 1) can meet the sufficient descent condition. Only one calculation of the objective function and its gradient are needed for each iteration, which greatly improves its computational efficiency. This approach is well-suited for large-scale 3D MT inversions. We have tested our algorithm on data with and without topography, and the results matched the real models well. We can recommend performing inversions based on an unstructured finite-element method and the L-BFGS method for situations with topography and complex underground structures.展开更多
The effect of the azimuthal angle φ of the wave vector k on the propagation characteristics of the superluminous L-O mode waves (together with a case of the R-X mode) during different geomagnetic activities using a...The effect of the azimuthal angle φ of the wave vector k on the propagation characteristics of the superluminous L-O mode waves (together with a case of the R-X mode) during different geomagnetic activities using a three-dimensional (3D) ray-tracing method is investigated. This work is primarily an extension of our previous two-dimensional study in which the wave azimuthal angle was not considered. We present numerical simulations for this mode which is generated in the source cavity along a 70° night geomagnetic field line at the specific altitude of 1.5RE (where RE is the Earth's radius). It is found that, as in the two-dimensional case, the trajectory of L-O mode starting in the source meridian plane (or the wave azimuthal angle φ = 180°) can reach the lowest latitude; whereas it basically stays at relatively higher latitudes starting off the source meridian plane (or φ=180°). The results reveal that under appropriate conditions, the superluminous L-O mode waves may exist in the radiation belts of the Earth, but this remains to be supplemented by observational data.展开更多
基金This work was supported by the Key Project of the National Natural Science Foundation of China!(59833 140).
文摘For monomer reactivity ratios study, the copolymerization of D,L-3-methylglycolide (MG) with glycolide (GA) or D,L-lactide (LA) was carried out in bulk to a certain low conversion in the presence of stannous octoate at 140 degrees C. The copolymer compositions were determined by H-1 NMR spectroscopy. The monomer reactivity ratios were evaluated by Fineman-Ross method, Kelen-Tudos method and linear least-squares method. The monomer reactivity ratios of D,L-3-methylglycolide and glycolide or D,L-lactide are r(mg)= 0.73, r(ga)= 1.47; r(mg)= 1.71, r(la)= 0.92, respectively.
文摘[Objective] The aim of the study is to clone and analyze the gene encoding 14-3-3 protein from banana. [Method] Combined with PCR amplification, RACE (rapid amplification of cDNA ends) technique was employed to clone 14-3-3 gene from banana; then the amplified sequence was sequenced and homologically analyzed. [Result] A new cDNA homologous with 14-3-3 protein genes were obtained by RT-PCR and RACE ( rapid amplification of cDNA ends ) approaches. The full length of this cDNA was 866 bp encoding 197 amino acids. Alignment of deduced amino acid sequence with those from other plants revealed that the cDNA shared high homology with 14-3-3 protein genes from other plants, and was designated as Musa acuminata 14-3-3 gene (Ma-14-3-3d). Phylogenetic analysis reveals that Ma-14-3-3d has closer genetic relationship with those from monocotyledon species than those from other species. [Conclusion] Ma-14-3-3d belongs to the same lineage of 14-3-3 from monocotyledon.
文摘目的利用3D景深合成技术、显微偏光技术对茜草及其易混淆品进行鉴别,建立一种快速鉴别茜草的方法并提供相应的鉴别特征高清图。方法采用3D景深合成技术对茜草及其混淆品的表面及断面进行鉴别,并拍摄其微形态特征图。通过徒手切片法制作其临时装片,并利用偏光技术对其针晶束及其它组织结构进行观察、鉴别,拍摄其正常光与偏光下的横切面特征高清图。结果茜草的混淆品主要有茜草茎埋在地下部分、大茜草Rubia magna P.G.Xiao、蓬子菜Galium verum L.两种,可以通过其表面的粗糙程度、木栓层细胞的形态、针晶束的密度以及木质部、木栓层、韧皮部的径向比例进行区分。结论采用3D景深合成技术、偏光技术能够对茜草及其混淆品进行区分,为茜草的鉴别提供了新的思路。该方法操作简便、制作快速、鉴别特征明显,非常适合现场快检。
基金financially supported by the National Natural Science Foundation of China(No.41774125)Key Program of National Natural Science Foundation of China(No.41530320)+1 种基金the Key National Research Project of China(Nos.2016YFC0303100 and 2017YFC0601900)the Strategic Priority Research Program of Chinese Academy of Sciences Pilot Special(No.XDA 14020102)
文摘Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, such as the high computational cost for improving model accuracy and the difficulty of inverting with topography. In this paper, we used the limited-memory quasi-Newton(L-BFGS) method with an unstructured finite-element grid to perform 3D MT inversions. This method avoids explicitly calculating Hessian matrices, which greatly reduces the memory requirements. After the first iteration, the approximate inverse Hessian matrix well approximates the true one, and the Newton step(set to 1) can meet the sufficient descent condition. Only one calculation of the objective function and its gradient are needed for each iteration, which greatly improves its computational efficiency. This approach is well-suited for large-scale 3D MT inversions. We have tested our algorithm on data with and without topography, and the results matched the real models well. We can recommend performing inversions based on an unstructured finite-element method and the L-BFGS method for situations with topography and complex underground structures.
基金National Natural Science Foundation of China(Nos.40774078,40774077)the Chinese Academy of Sciences(No.KZCX3-SW-144)
文摘The effect of the azimuthal angle φ of the wave vector k on the propagation characteristics of the superluminous L-O mode waves (together with a case of the R-X mode) during different geomagnetic activities using a three-dimensional (3D) ray-tracing method is investigated. This work is primarily an extension of our previous two-dimensional study in which the wave azimuthal angle was not considered. We present numerical simulations for this mode which is generated in the source cavity along a 70° night geomagnetic field line at the specific altitude of 1.5RE (where RE is the Earth's radius). It is found that, as in the two-dimensional case, the trajectory of L-O mode starting in the source meridian plane (or the wave azimuthal angle φ = 180°) can reach the lowest latitude; whereas it basically stays at relatively higher latitudes starting off the source meridian plane (or φ=180°). The results reveal that under appropriate conditions, the superluminous L-O mode waves may exist in the radiation belts of the Earth, but this remains to be supplemented by observational data.