High-vertical-resolution radiosonde wind data are highly valuable for describing the dynamics of the meso-and microscale atmosphere. However, the current algorithm used in China's L-band radar sounding system for ...High-vertical-resolution radiosonde wind data are highly valuable for describing the dynamics of the meso-and microscale atmosphere. However, the current algorithm used in China's L-band radar sounding system for calculating highvertical-resolution wind vectors excessively smooths the data, resulting in significant underestimation of the calculated kinetic energy of gravity waves compared to similar products from other countries, which greatly limits the effective utilization of the data. To address this issue, this study proposes a novel method to calculate high-vertical-resolution wind vectors that utilizes the elevation angle, azimuth angle, and slant range from L-band radar. In order to obtain wind data with a stable quality, a two-step automatic quality control procedure, including the RMSE-F(root-mean-square error F) test and elemental consistency test are first applied to the slant range data, to eliminate continuous erroneous data caused by unstable signals or radar malfunctions. Then, a wind calculation scheme based on a sliding second-order polynomial fitting is utilized to derive the high-vertical-resolution radiosonde wind vectors. The evaluation results demonstrate that the wind data obtained through the proposed method show a high level of consistency with the high-resolution wind data observed using the Vaisala Global Positioning System and the data observed by the new Beidou Navigation Sounding System. The calculation of the kinetic energy of gravity waves in the recalculated wind data also reaches a level comparable to the Vaisala observations.展开更多
The Chinese east coastal areas and marginal seas are foggy regions. The development of effective forecasting methods rests upon a comprehensive knowledge of the fog phenomena. This study provides new observations asso...The Chinese east coastal areas and marginal seas are foggy regions. The development of effective forecasting methods rests upon a comprehensive knowledge of the fog phenomena. This study provides new observations associated with the sea togs over the northwestern Yellow Sea by means of L-band radar soundings with a high vertical resolution of 30m. The monthly tem- perature lapse rate, the Richardson Nulnbers, and the humidity show obvious seasonal variations in the lower level of the planetary boundary layer (PBL) that are related to the onset, peak and end of the Yellow Sea fog season. The typical pattern of stratification for the sea fog season in the northwestern Yellow Sea is that a stable layer of about 400 m thick caps a 150 m conditionally unstable layer Besides, the differences between togs and stratus clouds in terms of humidity, turbulence and temperature are analyzed, which is of significance for sea fog forecast and detection by satellites. The thickness of the sea fogs varies in different stages of the fog season, and is associated with the temperature inversion. The numerical simulation proves that the seasonal variations obtained by the radar well represent the situations over the Yellow Sea.展开更多
Aquarius is the second satellite mission to focus on the remote sensing of sea-surface salinity from space and it has mapped global sea-surface salinity for nearly 3 years since its launch in 2011. However,benefiting ...Aquarius is the second satellite mission to focus on the remote sensing of sea-surface salinity from space and it has mapped global sea-surface salinity for nearly 3 years since its launch in 2011. However,benefiting from the high atmospheric transparency and moderate sensitivity to wind speed of the L-band brightness temperature(TB),the Aquarius L-band radiometer can actually provide a new technique for the remote sensing of wind speed. In this article,the sea-surface wind speeds derived from TBs measured by Aquarius' L-band radiometer are presented,the algorithm for which is developed and validated using multisource wind speed data,including Wind Sat microwave radiometer and National Data Buoy Center buoy data,and the Hurricane Research Division of the Atlantic Oceanographic and Meteorological Laboratory wind field product. The error analysis indicates that the performance of retrieval algorithm is good. The RMSE of the Aquarius wind-speed algorithm is about 1 and 1.5 m/s for global oceans and areas of tropical hurricanes,respectively. Consequently,the applicability of using the Aquarius L-band radiometer as a near all-weather wind-speed measuring method is verified.展开更多
The properties and feasibility of L-band differential InSAR for detecting and monitoring mining-induced subsidence were systematically analyzed and demonstrated. The largest monitored subsidence gradient of 7.9×1...The properties and feasibility of L-band differential InSAR for detecting and monitoring mining-induced subsidence were systematically analyzed and demonstrated. The largest monitored subsidence gradient of 7.9×10-3 and magnitude of 91 cm were firstly derived by theoretical derivation. Then, the stronger phase maintaining capacity and weaker sensitivity to minor land subsidence compared with C-band DInSAR were illustrated by phase simulation of the actual mine subsidence. Finally, the data processing procedure of two-pass DInSAR was further refined to accurately observe subsidence of a coalfield of Jining in Northern China using 7 ALOS PALSAR images. The largest monitored subsidence magnitude of 39.22 cm and other properties were better investigated by testing results interpretation and subsidence analysis, and the absolute difference varying from 0.5 mm to 17.9 mm was obtained by comparison with leveling-measured subsidence. All of results show that L-band DInSAR technique can investigate the location, amount, area and other detailed subsidence information with relatively higher accuracy.展开更多
A chirped fibre Bragg grating according to ITU-T suggested L-band (2nd channel λ1 = 1570.83 nm; 80th channel λ2 = 1603.57 nm) with more than 1800 ps/nm single channel dispersion compensation is presented in this p...A chirped fibre Bragg grating according to ITU-T suggested L-band (2nd channel λ1 = 1570.83 nm; 80th channel λ2 = 1603.57 nm) with more than 1800 ps/nm single channel dispersion compensation is presented in this paper, of which the cladding mode loss, the delay curve ripple and the power fluctuation of the reflected spectrum are less than 0.5 dB, 50 ps and 0.25 dB, respectively. With this new FBG as dispersion compensation device, a 2 × 10 Gb/s wavelength division multiplexing (WDM) L-band transmission of 600 km based on conventional single mode fibre (G.652 fibre) is performed without forward error correction. The bit error rate (BER) is less than 10-12 and the power penalties of the 2nd and 80th channel of L-band are 1.8 dB and 2.0 dB, respectively.展开更多
[Objective] The research aimed to discuss shallowly the application of L-band sounding seconds data in the artificial precipitation. [Method] The characteristics, getting manner and displaying method of L-band soundin...[Objective] The research aimed to discuss shallowly the application of L-band sounding seconds data in the artificial precipitation. [Method] The characteristics, getting manner and displaying method of L-band sounding seconds data were introduced briefly. Moreover, its application prospect in the artificial precipitation operation was analyzed initially. We aimed to improve its application rate in the artificial precipitation operation. [Result] L-band sounding seconds data had the great improvement in the time-space resolution and the space positioning accuracy aspects when compared with the previous sounding data, and the precision reached the second level. It could provide the high-precision data basis for the assimilation of artificial precipitation numerical model initial field, and improve the numerical model. Moreover, the sounding product could provide the accurate scientific basis for the selection of artificial precipitation operation tool, the determination of operation height and range, and guide the artificial precipitation operation, and improve the operation efficiency. [Conclusion] The research provided the analysis and reference basis for the command of artificial precipitation operation.展开更多
The configuration of the novel three-stage L-band erbium-doped fiber amplifier with very large and flat gain and very low noise figure presented in this paper uses the forward ASE (amplified spontaneous emission) from...The configuration of the novel three-stage L-band erbium-doped fiber amplifier with very large and flat gain and very low noise figure presented in this paper uses the forward ASE (amplified spontaneous emission) from the first section of the EDF (erbium-doped fiber) and the backward ASE from the third section of the EDF (both serve as the secondary pump sources of energy) to pump the second EDF. To improve the pump efficiency, the power of the pump is split into two parts (with a ratio of e.g. 2:7). The characteristics of this L-band EDFA are studied on the basis of the Giles Model with ASE.展开更多
We demonstrate a passively harmonic mode-locked(PHML) fiber laser operating at the L-band using carbon nanotubes polyvinyl alcohol(CNTs-PVA) film. Under suitable pump power and an appropriate setting of the polari...We demonstrate a passively harmonic mode-locked(PHML) fiber laser operating at the L-band using carbon nanotubes polyvinyl alcohol(CNTs-PVA) film. Under suitable pump power and an appropriate setting of the polarization controller(PC), the 54^(th) harmonic pulses at the L-band are generated with the side mode suppression ratio(SMSR) better than 44 dB and a repetition frequency of 503.37 MHz. Further increasing the pump power leads to a higher frequency of 550 MHz with compromised stability of 38.5 dB SMSR. To the best of our knowledge, this is the first demonstration on the generation of L-band PHML pulses from an Er-doped fiber laser based on CNTs.展开更多
This research has used the L-band radar from ALOS-2 PALSAR-2 and field work data for evaluation of seasonal effects of backscattering intensity on retrieval forest biomass in the tropics. The effects of seasonality an...This research has used the L-band radar from ALOS-2 PALSAR-2 and field work data for evaluation of seasonal effects of backscattering intensity on retrieval forest biomass in the tropics. The effects of seasonality and HH, and HV polarizations of the SAR data on the biomass were analyzed. The dry season HV polarization could explain 61% of the biomass in this study region. The dry season HV backscattering intensity was highly sensitive to the biomass compared to the rainy season backscattering intensity. The SAR data acquired in the rainy season with humid and wet canopies were not very sensitive to the in situ biomass. Strong dependence of the biomass estimates with season of SAR data acquisition confirmed that the choice of right season SAR data is very important for improving the satellite based estimates of the biomass. This research expects that the results obtained in this research will contribute to monitoring of the quantity and quality of forest biomass in Vietnam and other tropical countries.展开更多
The objective of this study is to improve the performance of semi-empirical radar backscatter models, which are mainly used in microwave remote sensing (Oh 1992, Oh 2004 and Dubois). The study is based on satellite an...The objective of this study is to improve the performance of semi-empirical radar backscatter models, which are mainly used in microwave remote sensing (Oh 1992, Oh 2004 and Dubois). The study is based on satellite and ground data collected on bare soil surfaces during the Multispectral Crop Monitoring experimental campaign of the CESBIO laboratory in 2010 over an agricultural region in southwestern France. The dataset covers a wide range of soil (viewing top soil moisture, surface roughness and texture) and satellite (at different frequencies: X-, C- and L-bands, and different incidence angles: 24.3° to 53.3°) configurations. The proposed methodology consists in identifying and correcting the residues of the models, depending on the surface properties (roughness, moisture, texture) and/or sensor characteristics (frequency, incidence angle). Finally, one model has been retained for each frequency domain. Results show that the enhancements of the models significantly increase the simulation performances. The coefficient of correlation increases of 23% in mean and the simulation errors (RMSE) are reduced to below 2 dB (at the X and C-bands) and to 1 dB at the L-band, compared to the initial models. At the X- and C-bands, the best performances of the modified models are provided by Dubois, whereas Oh 2004 is more suitable for the L-band (r is equal to 0.69, 0.65 and 0.85). Moreover, the modified models of Oh 1992 and 2004 and Dubois, developed in this study, offer a wider domain of validity than the initial formalism and increase the capabilities of retrieving the backscattering signal in view of applications of such approaches to stronglycontrasted agricultural surface states.展开更多
Based on L-band sounding data,threshold method of relative humidity was used to analyze vertical distribution characteristics of precipitation cloud system in Tianjin region.The results showed that main precipitation ...Based on L-band sounding data,threshold method of relative humidity was used to analyze vertical distribution characteristics of precipitation cloud system in Tianjin region.The results showed that main precipitation cloud system affecting Tianjin is cold and warm mixed cloud,followed by cold cloud,and precipitation of warm cloud is less.During May-November,precipitation of cold and warm mixed cloud is dominant,and it is dominant by precipitation of cold cloud from January to April.In four seasons,the precipitation frequency of double-layer cloud is the most,and precipitation of single-layer cloud mainly appears during March-November,and peak is in June.Peak of cloud system with three or more layers all appears in July and August.The cold cloud and warm cloud catalysts should be selected respectively for artificial precipitation enhancement in Tianjin.In winter,cold cloud catalyst operation is selected;in spring,summer and autumn,the cold cloud catalyst is spread in the cold cloud area,and the warm cloud catalyst is distributed in the warm cloud area according to the conditions of cloud layer.展开更多
基金funded by an NSFC Major Project (Grant No. 42090033)the China Meteorological Administration Youth Innovation Team “High-Value Climate Change Data Product Development and Application Services”(Grant No. CMA2023QN08)the National Meteorological Information Centre Surplus Funds Program (Grant NMICJY202310)。
文摘High-vertical-resolution radiosonde wind data are highly valuable for describing the dynamics of the meso-and microscale atmosphere. However, the current algorithm used in China's L-band radar sounding system for calculating highvertical-resolution wind vectors excessively smooths the data, resulting in significant underestimation of the calculated kinetic energy of gravity waves compared to similar products from other countries, which greatly limits the effective utilization of the data. To address this issue, this study proposes a novel method to calculate high-vertical-resolution wind vectors that utilizes the elevation angle, azimuth angle, and slant range from L-band radar. In order to obtain wind data with a stable quality, a two-step automatic quality control procedure, including the RMSE-F(root-mean-square error F) test and elemental consistency test are first applied to the slant range data, to eliminate continuous erroneous data caused by unstable signals or radar malfunctions. Then, a wind calculation scheme based on a sliding second-order polynomial fitting is utilized to derive the high-vertical-resolution radiosonde wind vectors. The evaluation results demonstrate that the wind data obtained through the proposed method show a high level of consistency with the high-resolution wind data observed using the Vaisala Global Positioning System and the data observed by the new Beidou Navigation Sounding System. The calculation of the kinetic energy of gravity waves in the recalculated wind data also reaches a level comparable to the Vaisala observations.
基金the National Scientific and Technological R&D Program Nos 2006AA09Z149,GYHY200706031the Scientific and Technological R&D Program of Qingdao No05-2-NS-35
文摘The Chinese east coastal areas and marginal seas are foggy regions. The development of effective forecasting methods rests upon a comprehensive knowledge of the fog phenomena. This study provides new observations associated with the sea togs over the northwestern Yellow Sea by means of L-band radar soundings with a high vertical resolution of 30m. The monthly tem- perature lapse rate, the Richardson Nulnbers, and the humidity show obvious seasonal variations in the lower level of the planetary boundary layer (PBL) that are related to the onset, peak and end of the Yellow Sea fog season. The typical pattern of stratification for the sea fog season in the northwestern Yellow Sea is that a stable layer of about 400 m thick caps a 150 m conditionally unstable layer Besides, the differences between togs and stratus clouds in terms of humidity, turbulence and temperature are analyzed, which is of significance for sea fog forecast and detection by satellites. The thickness of the sea fogs varies in different stages of the fog season, and is associated with the temperature inversion. The numerical simulation proves that the seasonal variations obtained by the radar well represent the situations over the Yellow Sea.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the National Natural Science Foundation for Young Scientists of China(No.41306183)
文摘Aquarius is the second satellite mission to focus on the remote sensing of sea-surface salinity from space and it has mapped global sea-surface salinity for nearly 3 years since its launch in 2011. However,benefiting from the high atmospheric transparency and moderate sensitivity to wind speed of the L-band brightness temperature(TB),the Aquarius L-band radiometer can actually provide a new technique for the remote sensing of wind speed. In this article,the sea-surface wind speeds derived from TBs measured by Aquarius' L-band radiometer are presented,the algorithm for which is developed and validated using multisource wind speed data,including Wind Sat microwave radiometer and National Data Buoy Center buoy data,and the Hurricane Research Division of the Atlantic Oceanographic and Meteorological Laboratory wind field product. The error analysis indicates that the performance of retrieval algorithm is good. The RMSE of the Aquarius wind-speed algorithm is about 1 and 1.5 m/s for global oceans and areas of tropical hurricanes,respectively. Consequently,the applicability of using the Aquarius L-band radiometer as a near all-weather wind-speed measuring method is verified.
基金Projects(41274007,40874001)supported by the National Natural Science Foundations of ChinaProjects(ZR2012DM001,ZR2010DQ020)supported by Shandong Province Natural Science Foundation,China+2 种基金Project(2011B04)supported by the Key Laboratory of Surveying and Mapping Technology on Island and Reef,National Administration of Surveying,Mapping and Geoinformation,ChinaProject(2011KYTD103)supported by SDUST Research Fund,ChinaProject(BS2013F013)supported by Shangdong Province Outstanding Youth Scientist Foundation,China
文摘The properties and feasibility of L-band differential InSAR for detecting and monitoring mining-induced subsidence were systematically analyzed and demonstrated. The largest monitored subsidence gradient of 7.9×10-3 and magnitude of 91 cm were firstly derived by theoretical derivation. Then, the stronger phase maintaining capacity and weaker sensitivity to minor land subsidence compared with C-band DInSAR were illustrated by phase simulation of the actual mine subsidence. Finally, the data processing procedure of two-pass DInSAR was further refined to accurately observe subsidence of a coalfield of Jining in Northern China using 7 ALOS PALSAR images. The largest monitored subsidence magnitude of 39.22 cm and other properties were better investigated by testing results interpretation and subsidence analysis, and the absolute difference varying from 0.5 mm to 17.9 mm was obtained by comparison with leveling-measured subsidence. All of results show that L-band DInSAR technique can investigate the location, amount, area and other detailed subsidence information with relatively higher accuracy.
文摘A chirped fibre Bragg grating according to ITU-T suggested L-band (2nd channel λ1 = 1570.83 nm; 80th channel λ2 = 1603.57 nm) with more than 1800 ps/nm single channel dispersion compensation is presented in this paper, of which the cladding mode loss, the delay curve ripple and the power fluctuation of the reflected spectrum are less than 0.5 dB, 50 ps and 0.25 dB, respectively. With this new FBG as dispersion compensation device, a 2 × 10 Gb/s wavelength division multiplexing (WDM) L-band transmission of 600 km based on conventional single mode fibre (G.652 fibre) is performed without forward error correction. The bit error rate (BER) is less than 10-12 and the power penalties of the 2nd and 80th channel of L-band are 1.8 dB and 2.0 dB, respectively.
文摘[Objective] The research aimed to discuss shallowly the application of L-band sounding seconds data in the artificial precipitation. [Method] The characteristics, getting manner and displaying method of L-band sounding seconds data were introduced briefly. Moreover, its application prospect in the artificial precipitation operation was analyzed initially. We aimed to improve its application rate in the artificial precipitation operation. [Result] L-band sounding seconds data had the great improvement in the time-space resolution and the space positioning accuracy aspects when compared with the previous sounding data, and the precision reached the second level. It could provide the high-precision data basis for the assimilation of artificial precipitation numerical model initial field, and improve the numerical model. Moreover, the sounding product could provide the accurate scientific basis for the selection of artificial precipitation operation tool, the determination of operation height and range, and guide the artificial precipitation operation, and improve the operation efficiency. [Conclusion] The research provided the analysis and reference basis for the command of artificial precipitation operation.
文摘The configuration of the novel three-stage L-band erbium-doped fiber amplifier with very large and flat gain and very low noise figure presented in this paper uses the forward ASE (amplified spontaneous emission) from the first section of the EDF (erbium-doped fiber) and the backward ASE from the third section of the EDF (both serve as the secondary pump sources of energy) to pump the second EDF. To improve the pump efficiency, the power of the pump is split into two parts (with a ratio of e.g. 2:7). The characteristics of this L-band EDFA are studied on the basis of the Giles Model with ASE.
基金Project supported by the National Natural Science Foundation of China(Grant No.61605107)Young Eastern Scholar Program at Shanghai Institutions of Higher Learning,China(Grant No.QD2015027)+2 种基金the“Young 1000 Talent Plan”Program of Chinathe Open Program of the State Key Laboratory of Advanced Optical Communication Systems and Networks at Shanghai Jiaotong University,China(Grant No.2017GZKF17)RAEng/The Leverhulme Trust Senior Research Fellowships(Grant No.LTSRF1617/13/57).
文摘We demonstrate a passively harmonic mode-locked(PHML) fiber laser operating at the L-band using carbon nanotubes polyvinyl alcohol(CNTs-PVA) film. Under suitable pump power and an appropriate setting of the polarization controller(PC), the 54^(th) harmonic pulses at the L-band are generated with the side mode suppression ratio(SMSR) better than 44 dB and a repetition frequency of 503.37 MHz. Further increasing the pump power leads to a higher frequency of 550 MHz with compromised stability of 38.5 dB SMSR. To the best of our knowledge, this is the first demonstration on the generation of L-band PHML pulses from an Er-doped fiber laser based on CNTs.
文摘This research has used the L-band radar from ALOS-2 PALSAR-2 and field work data for evaluation of seasonal effects of backscattering intensity on retrieval forest biomass in the tropics. The effects of seasonality and HH, and HV polarizations of the SAR data on the biomass were analyzed. The dry season HV polarization could explain 61% of the biomass in this study region. The dry season HV backscattering intensity was highly sensitive to the biomass compared to the rainy season backscattering intensity. The SAR data acquired in the rainy season with humid and wet canopies were not very sensitive to the in situ biomass. Strong dependence of the biomass estimates with season of SAR data acquisition confirmed that the choice of right season SAR data is very important for improving the satellite based estimates of the biomass. This research expects that the results obtained in this research will contribute to monitoring of the quantity and quality of forest biomass in Vietnam and other tropical countries.
文摘The objective of this study is to improve the performance of semi-empirical radar backscatter models, which are mainly used in microwave remote sensing (Oh 1992, Oh 2004 and Dubois). The study is based on satellite and ground data collected on bare soil surfaces during the Multispectral Crop Monitoring experimental campaign of the CESBIO laboratory in 2010 over an agricultural region in southwestern France. The dataset covers a wide range of soil (viewing top soil moisture, surface roughness and texture) and satellite (at different frequencies: X-, C- and L-bands, and different incidence angles: 24.3° to 53.3°) configurations. The proposed methodology consists in identifying and correcting the residues of the models, depending on the surface properties (roughness, moisture, texture) and/or sensor characteristics (frequency, incidence angle). Finally, one model has been retained for each frequency domain. Results show that the enhancements of the models significantly increase the simulation performances. The coefficient of correlation increases of 23% in mean and the simulation errors (RMSE) are reduced to below 2 dB (at the X and C-bands) and to 1 dB at the L-band, compared to the initial models. At the X- and C-bands, the best performances of the modified models are provided by Dubois, whereas Oh 2004 is more suitable for the L-band (r is equal to 0.69, 0.65 and 0.85). Moreover, the modified models of Oh 1992 and 2004 and Dubois, developed in this study, offer a wider domain of validity than the initial formalism and increase the capabilities of retrieving the backscattering signal in view of applications of such approaches to stronglycontrasted agricultural surface states.
基金Supported by Open Research Fund Project of Key Laboratory of Meteorology and Ecological Environment of Hebei Province(Z202001Z,Z201602Z)Science and Technology Collaborative Innovation Fund Project in Bohai Rim Region(QYXM202004)Key Projects of Tianjin Meteorological Bureau(201801zdxm01)。
文摘Based on L-band sounding data,threshold method of relative humidity was used to analyze vertical distribution characteristics of precipitation cloud system in Tianjin region.The results showed that main precipitation cloud system affecting Tianjin is cold and warm mixed cloud,followed by cold cloud,and precipitation of warm cloud is less.During May-November,precipitation of cold and warm mixed cloud is dominant,and it is dominant by precipitation of cold cloud from January to April.In four seasons,the precipitation frequency of double-layer cloud is the most,and precipitation of single-layer cloud mainly appears during March-November,and peak is in June.Peak of cloud system with three or more layers all appears in July and August.The cold cloud and warm cloud catalysts should be selected respectively for artificial precipitation enhancement in Tianjin.In winter,cold cloud catalyst operation is selected;in spring,summer and autumn,the cold cloud catalyst is spread in the cold cloud area,and the warm cloud catalyst is distributed in the warm cloud area according to the conditions of cloud layer.