This paper studies the problem of linear matrix inequality (LMI) approach to robust stability analysis for stochastic neural networks with a time-varying delay. By developing a delay decomposition approach, the info...This paper studies the problem of linear matrix inequality (LMI) approach to robust stability analysis for stochastic neural networks with a time-varying delay. By developing a delay decomposition approach, the information of the delayed plant states can be taken into full consideration. Based on the new Lyapunov-Krasovskii functional, some inequality techniques and stochastic stability theory, new delay-dependent stability criteria are obtained in terms of LMIs. The proposed results prove the less conservatism, which are realized by choosing new Lyapunov matrices in the decomposed integral intervals. Finally, numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed LMI method.展开更多
Necessary and suffcient conditions for the existence of a Lyapunov function in the Lur ’ e form to guarantee the absolute stability of Lur’ e control systems with multiple non-linearities are discussed in this paper...Necessary and suffcient conditions for the existence of a Lyapunov function in the Lur ’ e form to guarantee the absolute stability of Lur’ e control systems with multiple non-linearities are discussed in this paper. It simplifies the existence problem to one of solving a set of linear matrix inequalities (LMIs). If those LMIs are feasible, free parameters in the Lyapunov function, such as the positive definite matrix and the coefficients of the integral terms, are given by the solution of the LMIs. Otherwise, this Lyapunov function does not exist. Some sufficient conditions are also obtained for the robust absolute stability of uncertain systems. A numerical example is provided to demonstrate the effectiveness of the proposed method.展开更多
The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional ...The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional approach combining with a new method of introducing some relaxation matrices and tuning parameters, which can be chosen properly to lead to a less conservative result. First, a sufficient condition is proposed for robust stability of the autonomic system; next, the sufficient conditions of the robust stabilization controller and the existence condition of sliding mode are developed. The results are given in terms of linear matrix inequalities (LMIs), which can be solved via efficient interior-point algorithms. A numerical example is presented to illustrate the feasibility and advantages of the proposed design scheme.展开更多
In this paper, a novel non-monotonic Lyapunov-Krasovskii functional approach is proposed to deal with the stability analysis and stabilization problem of linear discrete time-delay systems. This technique is utilized ...In this paper, a novel non-monotonic Lyapunov-Krasovskii functional approach is proposed to deal with the stability analysis and stabilization problem of linear discrete time-delay systems. This technique is utilized to relax the monotonic requirement of the Lyapunov-Krasovskii theorem. In this regard, the Lyapunov-Krasovskii functional is allowed to increase in a few steps, while being forced to be overall decreasing. As a result, it relays on a larger class of Lyapunov-Krasovskii functionals to provide stability of a state-delay system. To this end, using the non-monotonic Lyapunov-Krasovskii theorem, new sufficient conditions are derived regarding linear matrix inequalities(LMIs)to study the global asymptotic stability of state-delay systems.Moreover, new stabilization conditions are also proposed for time-delay systems in this article. Both simulation and experimental results on a p H neutralizing process are provided to demonstrate the efficacy of the proposed method.展开更多
The separation of the Lyapunov matrices and system matrices plays an important role when one uses parameter-dependent Lyapunov functional handling systems with polytopic type uncertainties. The delay-dependent robust ...The separation of the Lyapunov matrices and system matrices plays an important role when one uses parameter-dependent Lyapunov functional handling systems with polytopic type uncertainties. The delay-dependent robust stability problem for systems with polytopic type uncertainties is discussed by using parameter-dependent Lyapunov functional. The derivative term in the derivative of Lyapunov functional is reserved and the free weighting matrices are employed to express the relationship between die terms in the system equation such that the Lyapunov matrices are not involved in any product terms with the system matrices. In addition, the relationships between the terms in the Leibniz Newton formula are also described by some free weighting matrices and some delay-dependent stability conditions are derived. Numerical examples demonstrate that the proposed criteria are more effective than the previous results.展开更多
The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain syst...The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.展开更多
This paper deals with the stability of Takagi-Sugeno fuzzy models with time delay. Using fuzzy weighting- dependent Lyapunov-Krasovskii functionals, new sufficient stability criteria are established in terms of Linear...This paper deals with the stability of Takagi-Sugeno fuzzy models with time delay. Using fuzzy weighting- dependent Lyapunov-Krasovskii functionals, new sufficient stability criteria are established in terms of Linear Matrix Inequality;hence the stability bound of upper bound delay time can be easily estimated. Finally, numeric simulations are given to validate the developed approach.展开更多
Based on a piecewise quadratic lyapunov function (PQLF), this paper presents stochastic stability analysis and synthesis methods for ItO and discrete T-S fuzzy bilinear stochastic systems. Two improved stochastic st...Based on a piecewise quadratic lyapunov function (PQLF), this paper presents stochastic stability analysis and synthesis methods for ItO and discrete T-S fuzzy bilinear stochastic systems. Two improved stochastic stability conditions have been established in terms of linear matrix inequalities (LMIs). It is shown that the stability in the mean square for T-S fuzzy bilinear stochastic systems can be established if a PQLF can be constructed. Considering the established stability criterion, the controller can be designed by solving a set of (LMIs), and the closed loop system is asymptotically stable in the mean square. Two illustrative examples are provided to demonstrate the effectiveness of the results proposed in this paper.展开更多
An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local ...An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach.展开更多
In this paper, we consider the problem of robust stability for a class of linear systems with interval time-varying delay under nonlinear perturbations using Lyapunov-Krasovskii (LK) functional approach. By partitio...In this paper, we consider the problem of robust stability for a class of linear systems with interval time-varying delay under nonlinear perturbations using Lyapunov-Krasovskii (LK) functional approach. By partitioning the delay-interval into two segments of equal length, and evaluating the time-derivative of a candidate LK functional in each segment of the delay-interval, a less conservative delay-dependent stability criterion is developed to compute the maximum allowable bound for the delay-range within which the system under consideration remains asymptotically stable. In addition to the delay-bi-segmentation analysis procedure, the reduction in conservatism of the proposed delay-dependent stability criterion over recently reported results is also attributed to the fact that the time-derivative of the LK functional is bounded tightly using a newly proposed bounding condition without neglecting any useful terms in the delay-dependent stability analysis. The analysis, subsequently, yields a stable condition in convex linear matrix inequality (LMI) framework that can be solved non-conservatively at boundary conditions using standard numerical packages. Furthermore, as the number of decision variables involved in the proposed stability criterion is less, the criterion is computationally more effective. The effectiveness of the proposed stability criterion is validated through some standard numerical examples.展开更多
This paper addresses the problems of the robust stability and robust stabilization of a discrete-time system with polytopic uncertainties. A new and simple method is presented to directly decouple the Lyapunov matrix ...This paper addresses the problems of the robust stability and robust stabilization of a discrete-time system with polytopic uncertainties. A new and simple method is presented to directly decouple the Lyapunov matrix and the system dynamic matrix. Combining this method with the parameter-dependent Lyapunov function approach yields new criteria that include some existing ones as special cases. A numerical example illustrates the improvement over the existing ones.展开更多
The design of a functional observer and reduced-order observer with internal delay for linear singular timedelay systems with unknown inputs is discussed. The sufficient conditions of the existence of observers, which...The design of a functional observer and reduced-order observer with internal delay for linear singular timedelay systems with unknown inputs is discussed. The sufficient conditions of the existence of observers, which are normal linear time-delay systems, and the corresponding design steps are presented via linear matrix inequality(LMI). Moreover, the observer-based feedback stabilizing controller is obtained. Three examples are given to show the effectiveness of the proposed methods.展开更多
In this paper, we present a new sufficient condition for absolute stability of Lure system with two additive time-varying delay components. This criterion is expressed as a set of linear matrix inequalities (LMIs), ...In this paper, we present a new sufficient condition for absolute stability of Lure system with two additive time-varying delay components. This criterion is expressed as a set of linear matrix inequalities (LMIs), which can be readily tested by using standard numerical software. We use this new criterion to stabilize a class of nonlinear time-delay systems. Some numerical examples are given to illustrate the applicability of the results using standard numerical software.展开更多
The problem of delay-dependent stability and passivity for linear neutral systems is discussed. By constructing a novel type Lyapunov-krasovskii functional, a new delay-dependent passivity criterion is presented in te...The problem of delay-dependent stability and passivity for linear neutral systems is discussed. By constructing a novel type Lyapunov-krasovskii functional, a new delay-dependent passivity criterion is presented in terms of linear matrix inequalities (LMIs). Model transformation, bounding for cross terms and selecting free weighting matrices [12-14] are not required in the arguments. Numerical examples show that the proposed criteria are available and less conservative than existing results .展开更多
This paper presents an H∞ controller design method for piecewise discrete time linear systems based on a piecewise quadratic Lyapunov function. It is shown that the resulting closed loop system is globally stable wit...This paper presents an H∞ controller design method for piecewise discrete time linear systems based on a piecewise quadratic Lyapunov function. It is shown that the resulting closed loop system is globally stable with guaranteed H∞ performance and the controller can be obtained by solving a set of bilinear matrix inequalities. It has been shown that piecewise quadratic Lyapunov functions are less conservative than the global quadratic Lyapunov functions. A simulation example is also given to illustrate the advantage of the proposed approach.展开更多
This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional th...This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.展开更多
This paper is concerned with the non-fragile H∞ filter design problem for uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delay. To begin with, the T-S fuzzy system is transformed to an equivale...This paper is concerned with the non-fragile H∞ filter design problem for uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delay. To begin with, the T-S fuzzy system is transformed to an equivalent switching fuzzy system. Then, based on the piecewise Lyapunov function and matrix decoupling technique, a new delay-dependent non-fragile H∞ filtering method is proposed for the switching fuzzy system. The proposed condition is less conservative than the previous results. Since only a set of LMIs is involved, the filter parameters can be solved directly. Finally, a design example is provided to illustrate the validity of the proposed method.展开更多
基金supported by the Science Foundation of the Department of Science and Technology,New Delhi,India (Grant No.SR/S4/MS:485/07)
文摘This paper studies the problem of linear matrix inequality (LMI) approach to robust stability analysis for stochastic neural networks with a time-varying delay. By developing a delay decomposition approach, the information of the delayed plant states can be taken into full consideration. Based on the new Lyapunov-Krasovskii functional, some inequality techniques and stochastic stability theory, new delay-dependent stability criteria are obtained in terms of LMIs. The proposed results prove the less conservatism, which are realized by choosing new Lyapunov matrices in the decomposed integral intervals. Finally, numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed LMI method.
基金This work was supported by the Doctor Subject Foundation of China (No. 2000053303)
文摘Necessary and suffcient conditions for the existence of a Lyapunov function in the Lur ’ e form to guarantee the absolute stability of Lur’ e control systems with multiple non-linearities are discussed in this paper. It simplifies the existence problem to one of solving a set of linear matrix inequalities (LMIs). If those LMIs are feasible, free parameters in the Lyapunov function, such as the positive definite matrix and the coefficients of the integral terms, are given by the solution of the LMIs. Otherwise, this Lyapunov function does not exist. Some sufficient conditions are also obtained for the robust absolute stability of uncertain systems. A numerical example is provided to demonstrate the effectiveness of the proposed method.
基金This work was partially supported by the National Natural Science Foundation of China(No.60504008).
文摘The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional approach combining with a new method of introducing some relaxation matrices and tuning parameters, which can be chosen properly to lead to a less conservative result. First, a sufficient condition is proposed for robust stability of the autonomic system; next, the sufficient conditions of the robust stabilization controller and the existence condition of sliding mode are developed. The results are given in terms of linear matrix inequalities (LMIs), which can be solved via efficient interior-point algorithms. A numerical example is presented to illustrate the feasibility and advantages of the proposed design scheme.
文摘In this paper, a novel non-monotonic Lyapunov-Krasovskii functional approach is proposed to deal with the stability analysis and stabilization problem of linear discrete time-delay systems. This technique is utilized to relax the monotonic requirement of the Lyapunov-Krasovskii theorem. In this regard, the Lyapunov-Krasovskii functional is allowed to increase in a few steps, while being forced to be overall decreasing. As a result, it relays on a larger class of Lyapunov-Krasovskii functionals to provide stability of a state-delay system. To this end, using the non-monotonic Lyapunov-Krasovskii theorem, new sufficient conditions are derived regarding linear matrix inequalities(LMIs)to study the global asymptotic stability of state-delay systems.Moreover, new stabilization conditions are also proposed for time-delay systems in this article. Both simulation and experimental results on a p H neutralizing process are provided to demonstrate the efficacy of the proposed method.
文摘The separation of the Lyapunov matrices and system matrices plays an important role when one uses parameter-dependent Lyapunov functional handling systems with polytopic type uncertainties. The delay-dependent robust stability problem for systems with polytopic type uncertainties is discussed by using parameter-dependent Lyapunov functional. The derivative term in the derivative of Lyapunov functional is reserved and the free weighting matrices are employed to express the relationship between die terms in the system equation such that the Lyapunov matrices are not involved in any product terms with the system matrices. In addition, the relationships between the terms in the Leibniz Newton formula are also described by some free weighting matrices and some delay-dependent stability conditions are derived. Numerical examples demonstrate that the proposed criteria are more effective than the previous results.
基金supported by the National Natural Science Foundation of China (6090405161021002)
文摘The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.
文摘This paper deals with the stability of Takagi-Sugeno fuzzy models with time delay. Using fuzzy weighting- dependent Lyapunov-Krasovskii functionals, new sufficient stability criteria are established in terms of Linear Matrix Inequality;hence the stability bound of upper bound delay time can be easily estimated. Finally, numeric simulations are given to validate the developed approach.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61304063, in part by the Fundamental Research Funds for the Central Universities under Grant 72103676, in part by the Science and Technology Research Foundation of Yanan under Grant 2013-KG16, in part by Yanan University under Grant YDBK2013-12, 2012SXTS07.
文摘Based on a piecewise quadratic lyapunov function (PQLF), this paper presents stochastic stability analysis and synthesis methods for ItO and discrete T-S fuzzy bilinear stochastic systems. Two improved stochastic stability conditions have been established in terms of linear matrix inequalities (LMIs). It is shown that the stability in the mean square for T-S fuzzy bilinear stochastic systems can be established if a PQLF can be constructed. Considering the established stability criterion, the controller can be designed by solving a set of (LMIs), and the closed loop system is asymptotically stable in the mean square. Two illustrative examples are provided to demonstrate the effectiveness of the results proposed in this paper.
基金Specialized Research Fund for the Doctoral Program of Higher Education ( No. 20090092110051)the Key Project of Chinese Ministry of Education ( No. 108060)the National Natural Science Foundation of China ( No. 51076027, 51036002, 51106024)
文摘An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach.
文摘In this paper, we consider the problem of robust stability for a class of linear systems with interval time-varying delay under nonlinear perturbations using Lyapunov-Krasovskii (LK) functional approach. By partitioning the delay-interval into two segments of equal length, and evaluating the time-derivative of a candidate LK functional in each segment of the delay-interval, a less conservative delay-dependent stability criterion is developed to compute the maximum allowable bound for the delay-range within which the system under consideration remains asymptotically stable. In addition to the delay-bi-segmentation analysis procedure, the reduction in conservatism of the proposed delay-dependent stability criterion over recently reported results is also attributed to the fact that the time-derivative of the LK functional is bounded tightly using a newly proposed bounding condition without neglecting any useful terms in the delay-dependent stability analysis. The analysis, subsequently, yields a stable condition in convex linear matrix inequality (LMI) framework that can be solved non-conservatively at boundary conditions using standard numerical packages. Furthermore, as the number of decision variables involved in the proposed stability criterion is less, the criterion is computationally more effective. The effectiveness of the proposed stability criterion is validated through some standard numerical examples.
基金Supported by the State Key Program of National Natural Science of China (60534010), National Basic Research Program of China (973 Program)(2009CB320604), National Natural Science Foundation of China (60674021), the Funds for Creative Research Groups of China (60521003), the 111 Project(B08015), and the Funds of Ph.D. Program of Ministry of Eduction, China (20060145019).
基金This work was supported in part by the Doctor Subject Foundation of China (No. 20050533015)the National Science Foundation of China(No. 60425310,60574014).
文摘This paper addresses the problems of the robust stability and robust stabilization of a discrete-time system with polytopic uncertainties. A new and simple method is presented to directly decouple the Lyapunov matrix and the system dynamic matrix. Combining this method with the parameter-dependent Lyapunov function approach yields new criteria that include some existing ones as special cases. A numerical example illustrates the improvement over the existing ones.
基金the National Natural Science Foundation of China (No. 50477042)the Ph.D. Programs Foundation of Ministry of Education of China (No. 20040422052 )the National Natural Science Foundation of Shandong Province (No.Z2004G04)
文摘The design of a functional observer and reduced-order observer with internal delay for linear singular timedelay systems with unknown inputs is discussed. The sufficient conditions of the existence of observers, which are normal linear time-delay systems, and the corresponding design steps are presented via linear matrix inequality(LMI). Moreover, the observer-based feedback stabilizing controller is obtained. Three examples are given to show the effectiveness of the proposed methods.
基金Supported by National Basic Research Program of China (973 Program) (2009CB320604), State Key Program of National Natural Science Foundation of China (60534010), National Natural Science Foundation of China (60674021), Funds for Creative Research Groups of China (60821063), the 111 Project (B08015), and the Funds of Doctoral Program of Ministry of Education of China (20060145019)
文摘In this paper, we present a new sufficient condition for absolute stability of Lure system with two additive time-varying delay components. This criterion is expressed as a set of linear matrix inequalities (LMIs), which can be readily tested by using standard numerical software. We use this new criterion to stabilize a class of nonlinear time-delay systems. Some numerical examples are given to illustrate the applicability of the results using standard numerical software.
基金This work was supported by the National Natural Science Foundation of China (No.60474003).
文摘The problem of delay-dependent stability and passivity for linear neutral systems is discussed. By constructing a novel type Lyapunov-krasovskii functional, a new delay-dependent passivity criterion is presented in terms of linear matrix inequalities (LMIs). Model transformation, bounding for cross terms and selecting free weighting matrices [12-14] are not required in the arguments. Numerical examples show that the proposed criteria are available and less conservative than existing results .
文摘This paper presents an H∞ controller design method for piecewise discrete time linear systems based on a piecewise quadratic Lyapunov function. It is shown that the resulting closed loop system is globally stable with guaranteed H∞ performance and the controller can be obtained by solving a set of bilinear matrix inequalities. It has been shown that piecewise quadratic Lyapunov functions are less conservative than the global quadratic Lyapunov functions. A simulation example is also given to illustrate the advantage of the proposed approach.
文摘This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.
基金supported by National Natural Science Foundation of China(No.60974139,No.60804021)Fundamental Research Funds for the Central Universities
文摘This paper is concerned with the non-fragile H∞ filter design problem for uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delay. To begin with, the T-S fuzzy system is transformed to an equivalent switching fuzzy system. Then, based on the piecewise Lyapunov function and matrix decoupling technique, a new delay-dependent non-fragile H∞ filtering method is proposed for the switching fuzzy system. The proposed condition is less conservative than the previous results. Since only a set of LMIs is involved, the filter parameters can be solved directly. Finally, a design example is provided to illustrate the validity of the proposed method.