本文针对多维背包问题维度高,约束强的特点提出了自记忆的学习优化模型(self memorized learn to improve,SML2I),通过深度强化学习的学习机制选择迭代搜索过程中的算子即模型学习当前的解以及历史搜索过程中的解,判断对当前解采用提升...本文针对多维背包问题维度高,约束强的特点提出了自记忆的学习优化模型(self memorized learn to improve,SML2I),通过深度强化学习的学习机制选择迭代搜索过程中的算子即模型学习当前的解以及历史搜索过程中的解,判断对当前解采用提升策略或者是扰动策略,在此基础上,进一步提出了哈希表与设计了2种有效的基于价值密度的扰动算子.使用哈希表记录历史搜索过程中的解,防止模型重复探索相同的解,基于价值密度的扰动策略生成的新解与之前的解决方案完全不同,因此针对扰动后的解再次采用提升策略同样有效,通过测试89个MKP数据集并与其他文献中先进的求解方法进行对比,实验结果验证了SML2I模型求解MKP问题的可行性与有效性.展开更多
Residuated lattice is an important non-classical logic algebra, and L-fuzzy rough set based on residuated lattice can describe the information with incompleteness, fuzziness and uncomparativity in information systems....Residuated lattice is an important non-classical logic algebra, and L-fuzzy rough set based on residuated lattice can describe the information with incompleteness, fuzziness and uncomparativity in information systems. In this paper, the representation theorems of L-fuzzy rough sets based on residuated lattice are given. The properties and axiomatic definition of the lower and upper approximarion operators in L-fuzzy rough sets are discussed.展开更多
文摘广泛应用于经典NP难问题即旅行商问题(Traveling Salesman Problem,TSP)的蚁群优化(Ant Colony Optimization,ACO)算法存在容易陷入局部最优、收敛速度慢等问题,但其采用正反馈机制并具备较强的鲁棒性,适合与其他算法相融合从而改进优化。基于此,引入人工蜂群的分级思想,提出了一种多级蚁态的蚁群改进(Multistage State Ant Colony Optimization,MSACO)算法。通过引入适应度算子将传统单蚁态蚁群划分为王蚁、被雇佣蚁和非雇佣蚁,并且在每次迭代后重新分配身份以动态维持多级蚁态。王蚁寻找最优路径即最优食物源,被雇佣蚁负责路径构建,非雇佣蚁进行局部优化。为了使非雇佣蚁更有效地获得优质解,提出了一种固定邻域优化算法。实验结果表明,在TSPLIB库的7个数据集中,MSACO均可以达到理论最优解程度,较其他改进算法的最优解迭代次数与运行时间可以减少约40%与50%。
文摘本文针对多维背包问题维度高,约束强的特点提出了自记忆的学习优化模型(self memorized learn to improve,SML2I),通过深度强化学习的学习机制选择迭代搜索过程中的算子即模型学习当前的解以及历史搜索过程中的解,判断对当前解采用提升策略或者是扰动策略,在此基础上,进一步提出了哈希表与设计了2种有效的基于价值密度的扰动算子.使用哈希表记录历史搜索过程中的解,防止模型重复探索相同的解,基于价值密度的扰动策略生成的新解与之前的解决方案完全不同,因此针对扰动后的解再次采用提升策略同样有效,通过测试89个MKP数据集并与其他文献中先进的求解方法进行对比,实验结果验证了SML2I模型求解MKP问题的可行性与有效性.
基金The National Natural Science Foundation of China (No60474022)
文摘Residuated lattice is an important non-classical logic algebra, and L-fuzzy rough set based on residuated lattice can describe the information with incompleteness, fuzziness and uncomparativity in information systems. In this paper, the representation theorems of L-fuzzy rough sets based on residuated lattice are given. The properties and axiomatic definition of the lower and upper approximarion operators in L-fuzzy rough sets are discussed.