期刊文献+
共找到6,369篇文章
< 1 2 250 >
每页显示 20 50 100
Preparation of lactic acid bacteria compound starter cultures based on pasting properties and its improvement of glutinous rice flour and dough 被引量:1
1
作者 Dengyu Wang Linlin Liu +4 位作者 Bing Wang Wenjian Xie Yanguo Shi Na Zhang Hongchen Fan 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2090-2101,共12页
The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,an... The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application. 展开更多
关键词 Glutinous rice flour Glutinous rice dough Lactic acid bacteria compound starter cultures Pasting properties VISCOELASTICITY
下载PDF
Soybean(Glycine max)rhizosphere organic phosphorus recycling relies on acid phosphatase activity and specific phosphorusmineralizing-related bacteria in phosphate deficient acidic soils
2
作者 Qianqian Chen Qian Zhao +9 位作者 Baoxing Xie Xing Lu Qi Guo Guoxuan Liu Ming Zhou Jihui Tian Weiguo Lu Kang Chen Jiang Tian Cuiyue Liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1685-1702,共18页
Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the ba... Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the bacterial community modifications are poorly understood. Here, six soybean(Glycine max) genotypes with differences in P efficiency were cultivated in acidic soils with long-term sufficient or deficient P-fertilizer treatments. The acid phosphatase(AcP) activities, organic-P concentrations and associated bacterial community compositions were determined in bulk and rhizosphere soils. The results showed that both soybean plant P content and the soil AcP activity were negatively correlated with soil organic-P concentration in P-deficient acidic soils. Soil P-availability affected the ɑ-diversity of bacteria in both bulk and rhizosphere soils. However, soybean had a stronger effect on the bacterial community composition, as reflected by the similar biomarker bacteria in the rhizosphere soils in both P-treatments. The relative abundance of biomarker bacteria Proteobacteria was strongly correlated with soil organic-P concentration and AcP activity in low-P treatments. Further high-throughput sequencing of the phoC gene revealed an obvious shift in Proteobacteria groups between bulk soils and rhizosphere soils, which was emphasized by the higher relative abundances of Cupriavidus and Klebsiella, and lower relative abundance of Xanthomonas in rhizosphere soils. Among them, Cupriavidus was the dominant phoC bacterial genus, and it was negatively correlated with the soil organic-P concentration. These findings suggest that soybean growth relies on organic-P mineralization in P-deficient acidic soils, which might be partially achieved by recruiting specific phoCharboring bacteria, such as Cupriavidus. 展开更多
关键词 organic phosphorus acid phosphatase SOYBEAN bacterial community phoC-harboring bacteria RHIZOSPHERE
下载PDF
Co-inoculation of Debaryomyces hansenii and lactic acid bacteria: a strategy to improve the taste and odour profiles of dry sausages
3
作者 Rongxin Wen Yumeng Sui +4 位作者 Jiaqi Liu Huiping Wang Baohua Kong Ligang Qin Qian Chen 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第6期3273-3283,共11页
The effects of the co-inoculation of Debaryomyces hansenii separately with 3 lactic acid bacteria(LAB),Lactobacillus sakei,Lactobacillus plantarum and Lactobacillus curvatus,on the taste and odour profi les of dry sau... The effects of the co-inoculation of Debaryomyces hansenii separately with 3 lactic acid bacteria(LAB),Lactobacillus sakei,Lactobacillus plantarum and Lactobacillus curvatus,on the taste and odour profi les of dry sausages were investigated.The co-inoculated sausages showed higher free amino acid and organic acid contents than the non-inoculated control and sausages inoculated with D.hansenii alone.Meanwhile,the sausages inoculated with D.hansenii+L.plantarum,D.hansenii+L.sakei and D.hansenii+L.curvatus had the highest contents of aldehydes,esters and alcohols,respectively.The results of electronic tongue,electronic nose and sensory evaluation demonstrated that compared with the sausage inoculated with D.hansenii,the sour taste and fl oral odour increased and the fatty odour decreased in the sausage inoculated with D.hansenii+L.sakei;this was more favourable for the development of a desirable fl avour in sausages.Moreover,the partial least squares regression analysis indicated that 10 taste and 33 odour compounds were mainly responsible for the differences in the flavour profiles among the sausages.Overall,these findings contributed to a more comprehensive understanding of the formation of sensory characteristics in dry sausages co-inoculated with yeast and LAB. 展开更多
关键词 Debaryomyces hansenii Lactic acid bacteria Dry sausage CO-INOCULATION Flavour profile
下载PDF
Allergen degradation of bee pollen by lactic acid bacteria fermentation and its alleviatory effects on allergic reactions in BALB/c mice
4
作者 Shuting Yin Qiangqiang Li +5 位作者 Yuxiao Tao Enning Zhou Kun Wang Wanwen Chen Xiangxin Li Liming Wu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期349-359,共11页
Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lac... Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lactic acid bacteria(LAB)were used to ferment Brassica napus BP for alleviating its allergenicity.Four novel allergens(glutaredoxin,oleosin-B2,catalase and lipase)were identified with significant decreases in LAB-fermented BP(FBP)than natural BP by proteomics.Meanwhile,metabolomics analysis showed significant increases of 28 characteristic oligopeptides and amino acids in FBP versus BP,indicating the degradation of LAB on allergens.Moreover,FBP showed alleviatory effects in BALB/c mice,which relieved pathological symptoms and lowered production of allergic mediators.Microbial high-throughput sequencing analysis showed that FBP could regulate gut microbiota and metabolism to strengthen immunity,which were closely correlated with the alleviation of allergic reactivity.These findings could contribute to the development and utilization of hypoallergenic BP products. 展开更多
关键词 Alleviatory effects Lactic acid bacteria fermentation Bee pollen allergen Gut microbiota Host metabolism
下载PDF
The Preliminary Study on Screening and Application of Phthalic Acid-Degrading Bacteria
5
作者 Honghao Zhang Lin Yang +3 位作者 Rubing Xu Yuxiao Sun Yong Yang Yanyan Li 《Advances in Microbiology》 CAS 2024年第4期226-239,共14页
Phthalic acid is a main pollutant, which is also an important reason for the continuous cropping effect of tobacco. In order to degrade the phthalic acid accumulated in the environment and relieve the obstacle effect ... Phthalic acid is a main pollutant, which is also an important reason for the continuous cropping effect of tobacco. In order to degrade the phthalic acid accumulated in the environment and relieve the obstacle effect of tobacco continuous cropping caused by the accumulation of phthalic acid in the soil. In this study, phthalate degrading bacteria B3 is screened from continuous cropping tobacco soil. The results of biochemical identification and 16sDNA comparison show that the homology between degrading bacterium B3 and Enterobacter sp. is 99%. At the same time, the growth of Enterobacter hormaechei subsp. B3 and the degradation of phthalic acid under different environmental conditions are studied. The results show that the environment with a temperature of 30˚C, PH of 7, and inoculation amount of not less than 1.2%, which is the optimal growth conditions for Enterobacter sp. B3. In an environment with a concentration of phthalic acid not exceeding 500 mg/L, Enterobacter sp. B3 has a better effect on phthalic acid degradation, and the degradation rate can reach 77% in 7 d. The results of indoor potting experiments on tobacco show that the degradation rate of phthalic acid by Enterobacter B3 in the soil is about 45%, which can reduce the inhibitory effect of phthalic acid on the growth of tobacco seedlings. This study enriches the microbial resources for degrading phthalic acid and provides a theoretical basis for alleviating tobacco continuous cropping obstacles. 展开更多
关键词 Phthalic acid Degrading bacteria Rhizosphere Soil
下载PDF
Screening of glucosinolates degrading lactic acid bacteria and their utilization in rapeseed meal fermentation
6
作者 Yifang Chen Chong Xie +2 位作者 Muhammad Bilal Pei Wang Runqiang Yang 《Grain & Oil Science and Technology》 CAS 2024年第3期168-176,共9页
Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but... Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but a food-grade starter culture with glucosinolates degradation capacity is required. In this study, 46 strains of lactic acid bacteria from traditional paocai brines were screened for their ability to glucosinolate degradation. The results showed that more than 50% of the strains significantly degraded glucosinolates. Two strains of Lactiplantibacillus(p7 and s7) with high capacity of glucosinolates degradation through producing enzymes were identified. Then,an optimized condition for rapeseed meal fermentation by p7 was established to degrade glucosinolates, which can achieve about 80% degradation. UPLC/Q-TOF-MS analysis showed that the degradation rate of individual glucosinolates was different and the degradation rate of gluconapin and progoitrin in rapeseed meal can reach more than 90%. Meanwhile, fermentation with p7 can improve safety of rapeseed meal by inhibiting the growth of Enterobacteriaceae and improve its nutritional properties by degrading phytic acid. The in vitro digestion experiments showed that the content of glucosinolates in rapeseed meal decreased significantly during gastric digestion. Meanwhile, fermentation with p7 can greatly improve the release of soluble protein and increase the contents of free essential amino acids, such as lysine(increased by 12 folds) and methionine(increased by 10 folds). 展开更多
关键词 Rapeseed meal GLUCOSINOLATES FERMENTATION Lactic acid bacteria In vitro digestion
下载PDF
Application of Next Generation Sequencing for Rapid Identification of Lactic Acid Bacteria
7
作者 Xiaxia HOU Yunxia WANG +2 位作者 Shuhuan ZHAO Hongbing JIA Cuizhi LI 《Asian Agricultural Research》 2024年第4期27-32,共6页
The rapid identification of lactic acid bacteria,which are essential microorganisms in the food industry,is of great significance for industrial applications.The identification of lactic acid bacteria traditionally re... The rapid identification of lactic acid bacteria,which are essential microorganisms in the food industry,is of great significance for industrial applications.The identification of lactic acid bacteria traditionally relies on the isolation and identification of pure colonies.While this method is well-established and widely used,it is not without limitations.The subjective judgment inherent in the isolation and purification process introduces potential for error,and the incomplete nature of the isolation process can result in the loss of valuable information.The advent of next generation sequencing has provided a novel approach to the rapid identification of lactic acid bacteria.This technology offers several advantages,including rapidity,accuracy,high throughput,and low cost.Next generation sequencing represents a significant advancement in the field of DNA sequencing.Its ability to rapidly and accurately identify lactic acid bacteria strains in samples with insufficient information or in the presence of multiple lactic acid bacteria sets it apart as a valuable tool.The application of this technology not only circumvents the potential errors inherent in the traditional method but also provides a robust foundation for the expeditious identification of lactic acid bacteria strains and the authentication of bacterial powder in industrial applications.This paper commences with an overview of traditional and molecular biology methods for the identification of lactic acid bacteria.While each method has its own advantages,they are not without limitations in practical application.Subsequently,the paper provides an introduction of the principle,process,advantages,and disadvantages of next generation sequencing,and also details its application in strain identification and rapid identification of lactic acid bacteria.The objective of this study is to provide a comprehensive and reliable basis for the rapid identification of industrial lactic acid bacteria strains and the authenticity identification of bacterial powder. 展开更多
关键词 LACTIC acid bacteria RAPID identification NEXT generation SEQUENCING
下载PDF
Effect of lactic acid bacteria and propionic acid on conservation characteristics,aerobic stability and in vitro gas production kinetics and digestibility of whole-crop corn based total mixed ration silage 被引量:17
8
作者 CHEN Lei YUAN Xian-jun +3 位作者 LI Jun-feng WANG Si-ran DONG Zhi-hao SHAO Tao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第7期1592-1600,共9页
This study was conducted to evaluate the effect of lactic acid bacteria and propionic acid on the fermentation quality, aer- obic stability and in vitro gas production kinetics and digestibility of whole-crop corn bas... This study was conducted to evaluate the effect of lactic acid bacteria and propionic acid on the fermentation quality, aer- obic stability and in vitro gas production kinetics and digestibility of whole-crop corn based totalmixed ration (TMR) silage. Total mixed ration was ensiled with four treatments: (1) no additives (control); (2) an inoculant (Lactobacillus plantarum) (L); (3) propionicacid (P); (4) propionic acid+lactic acid bacteria (PL). All treatments were ensiled in laboratory-scale silos for 45 days, and then subjected to an aerobic stability test for12 days. Further, four TMR silages were incubated in vitro with buffered rumen fluid to study in vitro gas production kinetics and digestibility. The results indicated that all TMR silages had good fermentation characteristics with low pH (〈3.80) and ammonia nitrogen (NH3-N) contents, and high lactic acid contents as well as Flieg points. Addition of L further improved TMR silage quality with more lactic acid production. Addition of P and PL decreased lactic acid and NH3-N contents of TMR silage compared to the control (P〈0.05). After 12 days aerobic exposure, P and PL silages remained stable, but L and the control silages deteriorated as indicated by a reduction in lactic acid and an increase in pH, and numbers of yeast. Compared to the control, addition of L had no effects on TMR silage in terms of 72 h cumulative gas production, in vitro dry matter digestibility, metabolizable energy, net energy for lactation and short chain fatty acids, whereas addition of PL significantly (P〈0.05) increased them. L silage had higher (P〈0.05) in vitro neutral detergent fiber digestibility than the control silage. The results of our study suggested that TMR silage prepared with whole-crop corn can be well preserved with or without additives. Furthermore, the findings of this study suggested that propionic acid is compatible with lactic acid bacteria inoculants, and when used together, although they reduced lactic acid production of TMR silage, they improved aerobic stability and in vitro nutrients digestibility of TMR silage. 展开更多
关键词 lactic acid bacteria propionic acid fermentation quality aerobic stability in vitro digestibility total mixed rationsilage
下载PDF
Effects of lactic acid bacteria isolated from fermented mustard on lowering cholesterol 被引量:10
9
作者 Shu Chen Wang Chen Kai Chang +3 位作者 Shu Chang Chan Jiunn Shiuh Shieh Chih Kwang Chiu Pin-Der Duh 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2014年第7期523-528,共6页
Objective:To evaluate the ability of lactic acid bacteria(LAB)strains isolated from fermented mustard to lower the cholesterol in vitro.Methods:The ability of 50 LAB strains isolated from fermented mustard on lowering... Objective:To evaluate the ability of lactic acid bacteria(LAB)strains isolated from fermented mustard to lower the cholesterol in vitro.Methods:The ability of 50 LAB strains isolated from fermented mustard on lowering cholesterol in vitro was determined by modified o-phtshalaldehyde method.The LAB isolates were analyzed for their resistance to acid and bile salt.Strains with lowering cholesterol activity,were determined adherence to Caco-2 cells.Results:Strain B0007,B0006 and B0022 assimilated more cholesterol than BCRC10474 and BCRC17010.The isolated strains showed tolerance to pH 3.0 for 3h despite variations in the degree of viability and bile-tolerant strains,with more than 10~s CFU/mL after incubation for 24 h at 1%oxigall in MRS.In addition,strain B0007 and B0022 identified as Lactobacillus plantarum with 16S rDNA sequences were able to adhere to the Caco-2 cell lines.Conclusions:These strains B0007 and B0022 may be potential functional sources for cholesterollowering activities as well as adhering to Caco-2 cell lines. 展开更多
关键词 CHOLESTEROL-LOWERING activity Probiotic LACTIC acid bacteria acid BILE tolerance
下载PDF
Influence of lactic acid bacteria, cellulase, cellulase-producing Bacillus pumilus and their combinations on alfalfa silage quality 被引量:20
10
作者 LI Dong-xia NI Kui-kui +2 位作者 ZHANG Ying-chao LIN Yan-li YANG Fu-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第12期2768-2782,共15页
This study assessed the effects of lactic acid bacteria(LAB), cellulase, cellulase-producing Bacillus pumilus and their combinations on the fermentation characteristics, chemical composition, bacterial community and i... This study assessed the effects of lactic acid bacteria(LAB), cellulase, cellulase-producing Bacillus pumilus and their combinations on the fermentation characteristics, chemical composition, bacterial community and in vitro digestibility of alfalfa silage. A completely randomized design involving a 8(silage additives)×3 or 2(silage days) factorial arrangement of treatments was adopted in the present study. The 8 silage additive treatments were: untreated alfalfa(control); two commercial additives(GFJ and Chikuso-1); an originally selected LAB(Lactobacillus plantarum a214) isolated from alfalfa silage; a cellulase-producing Bacillus(CB) isolated from fresh alfalfa; cellulase(C); and the combined additives(a214+C and a214+CB). Silage fermentation characteristics, chemical composition and microorganism populations were analysed after 30, 60 and 65 days(60 days followed by exposure to air for five additional days). In vitro digestibility was analysed for 30 and 60 days. Compared with the other treatments, selected LAB a214, a214 combined with either C or CB, and Chikuso-1 had the decreased(P<0.001) pH and increased(P<0.001) lactic acid concentrations during the ensiling process, and there were no differences(P>0.05) among them. Fiber degradation was not significant(P≥0.054) in any C or CB treatments. The a214 treatment showed the highest(P=0.009) in vitro digestibility of dry matter(595.0 g kg–1DM) after ensiling and the highest abundance of Lactobacillus(69.42 and 79.81%, respectively) on days 60 and 65, compared to all of other treatments. Overall, the silage quality of alfalfa was improved with the addition of a214, which indicates its potential as an alfalfa silage inoculant. 展开更多
关键词 alfalfa silage CELLULASE fermentation quality invitro digestibility lactic acid bacteria
下载PDF
The aflatoxin B1 isolating potential of two lactic acid bacteria 被引量:9
11
作者 Adel Hamidi Reza Mirnejad +5 位作者 Emad Yahaghi Vahid Behnod Ali Mirhosseini Sajad Amani Sara Sattari Ebrahim Khodaverdi Darian 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2013年第9期732-736,共5页
Objective:To determine lactic acid bacteria's capability to enhance the process of binding and isolating aflatoxin B1 and to utilize such lactic acid bacteria as a food supplement or probiotic products for prevent... Objective:To determine lactic acid bacteria's capability to enhance the process of binding and isolating aflatoxin B1 and to utilize such lactic acid bacteria as a food supplement or probiotic products for preventing absorption of aflatoxin Bl in human and animal bodies.Methods:In the present research,the bacteria were isolated from five different sources.For surveying the capability of the bacteria in isolating aflatoxin Bl,ELISA method was implemented,and for identifying the resultant strains through 16S rRNA sequencing method,universal primers were applied.Results:Among the strains which were isolated,two strains of Lactobacillus pentosus and Lactobacillus beveris exhibited the capability of absorbing and isolating aflatoxin Bl by respectively absorbing and discharging 17.4%and 34.7%of the aforementioned toxin existing in the experiment solution.Conclusions:Strains of Lactobacillus pentosus and Lactobacillus beveris were isolated from human feces and local milk samples,respectively.And both strains has the ability to isolate or bind with aflatoxin Bl. 展开更多
关键词 MYCOTOXIN AFLATOXIN LACTIC acid bacteria ELISA test
下载PDF
The effects of fermentation and adsorption using lactic acid bacteria culture broth on the feed quality of rice straw 被引量:16
12
作者 LIU Jing-jing LIU Xiao-ping +5 位作者 REN Ji-wei ZHAO Hong-yan YUAN Xu-feng WANG Xiao-fen Abdelfattah Z M Salem CUI Zong-jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第3期503-513,共11页
To improve the nutritional value and the palatability of air-dried rice straw, culture broth of the lactic acid bacteria community SFC-2 was used to examine the effects of two different treatments, fermentation and ad... To improve the nutritional value and the palatability of air-dried rice straw, culture broth of the lactic acid bacteria community SFC-2 was used to examine the effects of two different treatments, fermentation and adsorption. Air-dried and chopped rice straw was treated with either fermentation for 30 d after adding 1.5 L nutrient solution(50 m L inocula L–1, 1.2×1012 CFU m L–1 inocula) kg–1 straw dry matter, or spraying a large amount of culture broth(1.5 L kg–1 straw dry matter, 1.5×1011 CFU m L–1 culture broth) on the straw and allowing it to adsorb for 30 min. The feed quality and aerobic stability of the resulting forage were examined. Both treatments improved the feed quality of rice straw, and adsorption was better than fermentation for preserving nutrients and improving digestibility, as evidenced by higher dry matter(DM) and crude protein(CP) concentrations, lower neutral detergent fiber(NDF), acid detergent fiber(ADF) and NH3-N concentrations, as well as higher lactic acid production and in vitro digestibility of DM(IVDMD). The aerobic stability of the adsorbed straw and the fermented straw was 392 and 480 h, respectively. After being exposed to air, chemical components and microbial community of the fermented straw were more stable than the adsorbed straw. 展开更多
关键词 ADSORPTION FERMENTATION lactic acid bacteria culture broth rice straw
下载PDF
The Role of Lactic Acid Bacteria in Milk Fermentation 被引量:36
13
作者 Yantyati Widyastuti Rohmatussolihat   Andi Febrisiantosa 《Food and Nutrition Sciences》 2014年第4期435-442,共8页
Species of lactic acid bacteria (LAB) represent as potential microorganisms and have been widely applied in food fermentation worldwide. Milk fermentation process has been relied on the activity of LAB, where transfor... Species of lactic acid bacteria (LAB) represent as potential microorganisms and have been widely applied in food fermentation worldwide. Milk fermentation process has been relied on the activity of LAB, where transformation of milk to good quality of fermented milk products made possible. The presence of LAB in milk fermentation can be either as spontaneous or inoculated starter cultures. Both of them are promising cultures to be explored in fermented milk manufacture. LAB have a role in milk fermentation to produce acid which is important as preservative agents and generating flavour of the products. They also produce exopolysaccharides which are essential as texture formation. Considering the existing reports on several health-promoting properties as well as their generally recognized as safe (GRAS) status of LAB, they can be widely used in the developing of new fermented milk products. 展开更多
关键词 LACTIC acid bacteria MILK FERMENTATION PRESERVATIVE FLAVOUR Health
下载PDF
The effect of lactic acid bacteria inoculums on in vitro rumen fermentation, methane production, ruminal cellulolytic bacteria populations and cellulase activities of corn stover silage 被引量:12
14
作者 GUO Gang SHEN Chen +6 位作者 LIU Qiang ZHANG Shuan-lin SHAO Tao WANG Cong WANG Yongxin XU Qing-fang HUO Wen-jie 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第3期838-847,共10页
The objective of this study was to investigate the effect of lactic acid bacteria(LAB) inoculums on fermentation quality and in vitro digestibility of corn stover silage.Corn stover was ensiled without(control) or wit... The objective of this study was to investigate the effect of lactic acid bacteria(LAB) inoculums on fermentation quality and in vitro digestibility of corn stover silage.Corn stover was ensiled without(control) or with Lactobacillus plantarum(LP),Enterococcus faecalis(EF),and Enterococcus mundtii(EM) for 45 days.The fermentation characteristics were assessed,and subsequent in vitro dry matter digestibility(DM-D),neutral detergent fiber digestibility(NDF-D),volatile fatty acids(VFA),methane(CH4) production,cellulolytic bacteria proportions and their activities per corn stover silage were also determined.There was no significant difference(P>0.05) among the silage pH,lactic acid,crude protein(CP),water soluble carbohydrates(WSC) and lignocelluloses contents of different treatments.The relative proportions of Ruminococcus flavefaciens and Fibrobacter succinogenes,carboxymethyl-ocellulose and β-glycosidase activities,DM-D,NDF-D,and VFA production of in vitro incubation was higher(P<0.05) for silages inoculated with LP and EF than those of the control silage.Silage inoculated with LP showed the lowest(P<0.05) CH4 production per unit yield of VFA,which was positively corresponded to the lowest(P<0.05) ratio of acetate to propionate.In summary,the ensiling fermentation quality and subsequent utilization of corn stover silage were efficiently improved by inoculated with L.plantarum. 展开更多
关键词 corn stover in vitro digestibility lactic acid bacteria SILAGE
下载PDF
Effects of Cinnamic Acid on Bacterial Community Diversity in Rhizosphere Soil of Cucumber Seedlings Under Salt Stress 被引量:9
15
作者 LIU Jing WU Feng-zhi YANG Yang 《Agricultural Sciences in China》 CAS CSCD 2010年第2期266-274,共9页
To investigate the effects of a plant autotoxin, cinnamic acid, on bacterial communities in the rhizosphere soil of cucumber seedlings under salt stress, we used cucumber as the experimental material, cinnamic acid as... To investigate the effects of a plant autotoxin, cinnamic acid, on bacterial communities in the rhizosphere soil of cucumber seedlings under salt stress, we used cucumber as the experimental material, cinnamic acid as the autotoxin, and NaCl to apply salt stress. Bacterial communities in the rhizosphere soil were analyzed using polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and clone sequencing. Salt stress decreased the diversity of bacterial species in rhizosphere soil of cucumber seedlings at several growth stages. Cinnamic acid exacerbated the effects of salt stress at high concentrations, but alleviated its effects at low concentrations. Cloning and sequencing results indicated that DGGE bands amplified from soil samples showed high homology to uncultured bacterial species. Cinnamic acid at 50 mg kg^-1 soil improved cucumber growth and was the most effective treatment to alleviate the effects of salt stress on bacterial communities. 展开更多
关键词 bacteria cinnamic acid CUCUMBER salt stress PCR-DGGE
下载PDF
Comparative studies of versatile extracellular proteolytic activities of lactic acid bacteria and their potential for extracellular amino acid productions as feed supplements 被引量:5
16
作者 Ye Heng Lim Hooi Ling Foo +2 位作者 Teck Chwen Loh Rosfarizan Mohamad Norhani Abdullah 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2019年第3期789-801,共13页
Background:Increasing understanding on the functions of amino acids (AA) has led to new commercial applications and expansion of the worldwide markets.However,the current technologies rely heavily on non-food grade mi... Background:Increasing understanding on the functions of amino acids (AA) has led to new commercial applications and expansion of the worldwide markets.However,the current technologies rely heavily on non-food grade microorganism and chemical synthesis for the production of AA.Several studies reported that lactic acid bacteria (LAB) have the capability of producing AA owing to their well-established proteolytic system and amino acid biosynthesis genes.Hence,the objectives of this study were to explore the extracellular proteolytic activity of LAB isolated from various Malaysian fermented foods and their potential to produce AA extracellularly as feed supplements.Results:All the studied LAB isolates were versatile extracellular protease producers,whereby extracellular protease activities were detected from acidic to alkaline pH (pH 5,pH 6.5,pH 8) using qualitative and quantitative proteolytic assays.The highest proteolytic activity at pH 5 (15.76 U/mg) and pH 8 (19.42 U/mg) was achieved by Lactobacillus plantarum RG14,while Lactobacillus plantarum RS5 exhibited the highest proteolytic activity of 17.22 U/mg at pH 6.5.As for the results of AA production conducted in de Man,Rogosa and Sharpe medium and analysed by high pressure liquid chromatography system,all LAB isolates were capable of producing an array of AA.Generally,Pediococcus sp.showed greater ability for AA production as compared to Lactobacillus sp.Moreover,the studied LAB were able to produce a few major feed supplement AA such as methionine,lysine,threonine and tryptophan.P.pentosaceus TL-3 recorded the highest methionine and threonine productivity of 3.72 mg/L/h and 5.58 mg/L/h respectively.However,L.plantarum I-UL4 demonstrated a lysine productivity of 1.24 mg/L/h,while P.acidilactici TP-6 achieved up to 1.73 mg/L/h of tryptophan productivity.Conclusion:All the 17 studied LAB isolates possessed versatile extracellular proteolytic system and have vast capability of producing various amino acids including a few major feed supplement AA such as methionine,lysine,threonine and tryptophan.Despite AA production was strain dependent,the studied LAB isolates possessed vast potential and can be exploited further as a bio-agent or an alternative amino acids and bioactive peptide producers. 展开更多
关键词 Amino acid Bio-agent Extracel ular PROTEOLYTIC activity Feed SUPPLEMENT LACTIC acid bacteria Lactobacil us PEDIOCOCCUS
下载PDF
Effect of Cellulase and Lactic Acid Bacteria on Fermentation Quality and Chemical Composition of Wheat Straw Silage 被引量:16
17
作者 Kuikui Ni Yanping Wang +1 位作者 Huili Pang Yimin Cai 《American Journal of Plant Sciences》 2014年第13期1877-1884,共8页
The object of this study was to determine the effect of cellulase and lactic acid bacteria (LAB) on fermentation quality and chemical composition of wheat straw silage. Silages were prepared using a small-scale fermen... The object of this study was to determine the effect of cellulase and lactic acid bacteria (LAB) on fermentation quality and chemical composition of wheat straw silage. Silages were prepared using a small-scale fermentation system and the moisture level was adjusted to 60% of fresh matter (FM) with deionized water. Treatments were designed as: control silage without additives, LAB inoculant Lactobacillus casei Z3-1 (1.0 × 106 cfu·g-1 of FM), commercial inoculant L. plantarum FG 1 (1.0 × 106 cfu·g-1 of FM), Z3-1 + cellulase and FG 1 + cellulase. The neutral detergent fiber (NDF), acid detergent fiber (ADF) and crude protein (CP) contents of the wheat straw prior to ensiling were 76.93%, 48.52% and 4.63% of dry matter (DM), respectively. After 30 days of fermentation, the silages treated with LAB and LAB + cellulase had a lower (P < 0.05) pH and higher (P < 0.05) lactic acid content than the control, and the coliform bacteria, yeast and mold were inhibited at the early stage of fermentation. Besides, silages treated with cellulase had lower (P < 0.05) values of ADF and NDF than the control. The results confirmed that the addition of cellulase and LAB contributed to improving the fermentation quality of wheat straw silage. 展开更多
关键词 CELLULASE Chemical Composition LACTIC acid bacteria SILAGE FERMENTATION Wheat STRAW
下载PDF
Current Limitations and Challenges with Lactic Acid Bacteria: A Review 被引量:14
18
作者 Saeed A. Hayek Salam A. Ibrahim 《Food and Nutrition Sciences》 2013年第11期73-87,共15页
Lactic acid bacteria (LAB) play a critical role in food, agricultural, and clinical applications. The fast growing characteristics of LAB and their metabolic activity have been the key in most applications including f... Lactic acid bacteria (LAB) play a critical role in food, agricultural, and clinical applications. The fast growing characteristics of LAB and their metabolic activity have been the key in most applications including food production, agricultural industry, and probiotics. However, the biochemical and biophysical environments have significant effect on the growth and metabolic activity of LAB. While the biochemical conditions are most likely established, controlling and optimizing of biochemical conditions have many limitations and challenges. In addition to selecting the right strain, desirable metabolic processes required optimizing and controlling the available nutrients including sugars, peptides, free amino acids, minerals, and vitamins in addition to buffering agents. Thus, much of research was conducted to understand the impact of available nutrients on the growth and metabolic activities of LAB. However, only a few nutritional parameters could be controlled at a time while holding other parameters constant. The nutritional parameters may also interact with each other resulting in faulty results. Characteristics of LAB such as fastidiousness in their nutritional requirements, ability to produce acid and antimicrobial compounds, and variations in the nutritional requirements among strains have added additional limitations and challenges in this regard. Thus, chemically defined media (CDM) were suggested to deal with different limitations and challenges. However, due to differences in growth conditions, results obtained in CDM may face some obstacles when it comes to industrial applications. Thus, this paper aimed to review the recent data in regard to the role of the nutritional requirements of LAB in optimizing and controlling metabolic activities and to discuss the associated limitations and challenges. 展开更多
关键词 LACTIC acid bacteria METABOLIC Activity NUTRITIONAL Requirements LIMITATIONS CHALLENGES
下载PDF
Repeated-Batch and Continuous Production of L-Lactic Acid by Rhizopus oryzae Immobilized in Calcium Alginat Beads:ReactorPerformance and Kinetic Model 被引量:5
19
作者 李学梅 林建平 +1 位作者 刘茉娥 岑沛霖 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1998年第4期52-61,共10页
Repeated-batch and continuous production of L-lactic acid by immobilized Rhizopusoryzae with calcium alginate entrapment method in a three-phase fluidized-bed bioreactor was stud-ied.The operation conditions were opti... Repeated-batch and continuous production of L-lactic acid by immobilized Rhizopusoryzae with calcium alginate entrapment method in a three-phase fluidized-bed bioreactor was stud-ied.The operation conditions were optimized.The productivity based on total reactor volume wasabout 3 times higher than that with free cells in a traditional stirred tank bioreactor.A mathemat-ical model was proposed and the model predictions were in good agreement with the experimentaldat. 展开更多
关键词 l-lactic acid IMMOBILIZED FERMENTATION BIOREACTOR KINETIC model R.oryzae
下载PDF
Effect of a Novel Nucleating Agent on Isothermal Crystallization of Poly(L-lactic acid) 被引量:7
20
作者 WEN Liang XIN Zhong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第6期899-904,共6页
The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(... The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FTIR) . The analysis on kinetics demonstrates that TBC8-eb can not only accelerate the crystallization rate but also transform most of the original spherulite crystals of PLLA into sheaf-like crystals. Furthermore,the free energy of folding(σe) of PLLA and PLLA with TBC8-eb is 0.15 and 0.06 J·m-2,respectively,which suggests that the addition of TBC8-eb favors the regular folding of molecule chains in the crystallization of PLLA,improv-ing its crystallization rate. The FTIR results show that TBC8-eb can accelerate the conformational ordering of PLLA in the isothermal crystallization. The conformational ordering of PLLA nucleated with TBC8-eb begins with the interchain interaction of CH3,and then a short helix emerges where a couple of CH3 groups interact. 展开更多
关键词 CRYSTALLIZATION poly(l-lactic acid nucleating agent
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部