分离松乳菇Lactarius deliciosus与红汁乳菇L.hatsudake子实体内可培养的细菌,进行分类鉴定,为后期细菌与乳菇的相互作用研究奠定基础。利用传统平板法分离培养乳菇子实体内的细菌,进行16S r DNA片段的扩增和测序及系统发育树的构建和...分离松乳菇Lactarius deliciosus与红汁乳菇L.hatsudake子实体内可培养的细菌,进行分类鉴定,为后期细菌与乳菇的相互作用研究奠定基础。利用传统平板法分离培养乳菇子实体内的细菌,进行16S r DNA片段的扩增和测序及系统发育树的构建和物种多样性分析。从松乳菇中获得66株细菌,红汁乳菇中获得48株细菌。松乳菇子实体内细菌隶属于3个门6个属10个种,其中变形菌门的γ-变型菌纲为优势类群,占细菌总数的77.28%,β-变形菌纲的Pandoraea和拟杆菌门的金黄杆菌属Chryseobacterium分别占细菌总数的12.12%和10.6%。红汁乳菇子实体内共分离、鉴定出细菌3个门7个属7个种,其中变形菌门中的γ-变型菌纲为优势类群,占细菌总数的77.09%,厚壁菌门的芽胞杆菌属Bacillus和拟杆菌门的金黄杆菌属Chryseobacterium分别占细菌总数的14.58%和8.33%。松乳菇与红汁乳菇子实体内存在一定种类和数量的细菌,其中荧光假单胞菌Psedomonas fluorescens和美洲爱文氏菌Ewingella americana为优势细菌。展开更多
TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal...TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies.展开更多
Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life ...Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life of patients.To date,there are no viable treatment options for postoperative cognitive dysfunction.The identification of postoperative cognitive dysfunction hub genes could provide new research directions and therapeutic targets for future research.To identify the signaling mechanisms contributing to postoperative cognitive dysfunction,we first conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the Gene Expression Omnibus GSE95426 dataset,which consists of mRNAs and long non-coding RNAs differentially expressed in mouse hippocampus3 days after tibial fracture.The dataset was enriched in genes associated with the biological process"regulation of immune cells,"of which Chill was identified as a hub gene.Therefore,we investigated the contribution of chitinase-3-like protein 1 protein expression changes to postoperative cognitive dysfunction in the mouse model of tibial fractu re surgery.Mice were intraperitoneally injected with vehicle or recombinant chitinase-3-like protein 124 hours post-surgery,and the injection groups were compared with untreated control mice for learning and memory capacities using the Y-maze and fear conditioning tests.In addition,protein expression levels of proinflammatory factors(interleukin-1βand inducible nitric oxide synthase),M2-type macrophage markers(CD206 and arginase-1),and cognition-related proteins(brain-derived neurotropic factor and phosphorylated NMDA receptor subunit NR2B)were measured in hippocampus by western blotting.Treatment with recombinant chitinase-3-like protein 1 prevented surgery-induced cognitive impairment,downregulated interleukin-1βand nducible nitric oxide synthase expression,and upregulated CD206,arginase-1,pNR2B,and brain-derived neurotropic factor expression compared with vehicle treatment.Intraperitoneal administration of the specific ERK inhibitor PD98059 diminished the effects of recombinant chitinase-3-like protein 1.Collectively,our findings suggest that recombinant chitinase-3-like protein 1 ameliorates surgery-induced cognitive decline by attenuating neuroinflammation via M2 microglial polarization in the hippocampus.Therefore,recombinant chitinase-3-like protein1 may have therapeutic potential fo r postoperative cognitive dysfunction.展开更多
We performed a PubMed search for microRNAs in autism spectrum disorder that could serve as diagnostic biomarkers in patients and selected 17 articles published from January 2008 to December 2023,of which 4 studies wer...We performed a PubMed search for microRNAs in autism spectrum disorder that could serve as diagnostic biomarkers in patients and selected 17 articles published from January 2008 to December 2023,of which 4 studies were performed with whole blood,4 with blood plasma,5 with blood serum,1 with serum neural cell adhesion molecule L1-captured extracellular vesicles,1 with blood cells,and 2 with peripheral blood mononuclear cells.Most of the studies involved children and the study cohorts were largely males.Many of the studies had performed microRNA sequencing or quantitative polymerase chain reaction assays to measure microRNA expression.Only five studies had used real-time polymerase chain reaction assay to validate microRNA expression in autism spectrum disorder subjects compared to controls.The microRNAs that were validated in these studies may be considered as potential candidate biomarkers for autism spectrum disorder and include miR-500a-5p,-197-5p,-424-5p,-664a-3p,-365a-3p,-619-5p,-664a-3p,-3135a,-328-3p,and-500a-5p in blood plasma and miR-151a-3p,-181b-5p,-320a,-328,-433,-489,-572,-663a,-101-3p,-106b-5p,-19b-3p,-195-5p,and-130a-3p in blood serum of children,and miR-15b-5p and-6126 in whole blood of adults.Several important limitations were identified in the studies reviewed,and need to be taken into account in future studies.Further studies are warranted with children and adults having different levels of autism spectrum disorder severity and consideration should be given to using animal models of autism spectrum disorder to investigate the effects of suppressing or overexpressing specific microRNAs as a novel therapy.展开更多
L波段数字航空通信系统(L band digital aeronautical communication system,LDACS)是未来航空宽带通信重要的基础设施之一,针对LDACS信号容易受到相邻波道大功率测距仪(distance measuring equipment,DME)信号干扰的问题,提出了联合正...L波段数字航空通信系统(L band digital aeronautical communication system,LDACS)是未来航空宽带通信重要的基础设施之一,针对LDACS信号容易受到相邻波道大功率测距仪(distance measuring equipment,DME)信号干扰的问题,提出了联合正交投影干扰抑制与单快拍稀疏分解的波达方向(direction of arrival,DOA)估计方法。通过子空间投影抑制DME干扰,然后使用单快拍数据构建伪协方差矩阵,对伪协方差矩阵求高阶幂,之后进行奇异值分解,并利用约束条件求解稀疏解得到期望信号来向的估计值。所提方法使用高阶伪协方差矩阵降低了噪声影响,仅用单快拍就可以准确估计LDACS信号的入射方向。仿真结果表明,改进单快拍高级幂(improved single snapshot high order power,ISS-HOP)L1-SVD算法的估计精度优于ISS-HOP-MUSIC算法。该方法可以有效抑制DME干扰,提高OFDM接收机性能。展开更多
基金supported by the Koeln Fortune Program/Faculty of Medicine,University of Cologne,the Alzheimer Forschung Initiative e.V.(grant#22039,to HZ)open-access funding from the DFG/GRC issued to the University of CologneAlzheimer Forschung Initiative e.V.for Open Access Publishing(a publication grant#P2401,to MAAK)。
文摘TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies.
基金supported by the National Natural Science Foundation of China,Nos.81730033,82171193(to XG)the Key Talent Project for Strengthening Health during the 13^(th)Five-Year Plan Period,No.ZDRCA2016069(to XG)+1 种基金the National Key R&D Program of China,No.2018YFC2001901(to XG)Jiangsu Provincial Medical Key Discipline,No.ZDXK202232(to XG)。
文摘Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life of patients.To date,there are no viable treatment options for postoperative cognitive dysfunction.The identification of postoperative cognitive dysfunction hub genes could provide new research directions and therapeutic targets for future research.To identify the signaling mechanisms contributing to postoperative cognitive dysfunction,we first conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the Gene Expression Omnibus GSE95426 dataset,which consists of mRNAs and long non-coding RNAs differentially expressed in mouse hippocampus3 days after tibial fracture.The dataset was enriched in genes associated with the biological process"regulation of immune cells,"of which Chill was identified as a hub gene.Therefore,we investigated the contribution of chitinase-3-like protein 1 protein expression changes to postoperative cognitive dysfunction in the mouse model of tibial fractu re surgery.Mice were intraperitoneally injected with vehicle or recombinant chitinase-3-like protein 124 hours post-surgery,and the injection groups were compared with untreated control mice for learning and memory capacities using the Y-maze and fear conditioning tests.In addition,protein expression levels of proinflammatory factors(interleukin-1βand inducible nitric oxide synthase),M2-type macrophage markers(CD206 and arginase-1),and cognition-related proteins(brain-derived neurotropic factor and phosphorylated NMDA receptor subunit NR2B)were measured in hippocampus by western blotting.Treatment with recombinant chitinase-3-like protein 1 prevented surgery-induced cognitive impairment,downregulated interleukin-1βand nducible nitric oxide synthase expression,and upregulated CD206,arginase-1,pNR2B,and brain-derived neurotropic factor expression compared with vehicle treatment.Intraperitoneal administration of the specific ERK inhibitor PD98059 diminished the effects of recombinant chitinase-3-like protein 1.Collectively,our findings suggest that recombinant chitinase-3-like protein 1 ameliorates surgery-induced cognitive decline by attenuating neuroinflammation via M2 microglial polarization in the hippocampus.Therefore,recombinant chitinase-3-like protein1 may have therapeutic potential fo r postoperative cognitive dysfunction.
文摘We performed a PubMed search for microRNAs in autism spectrum disorder that could serve as diagnostic biomarkers in patients and selected 17 articles published from January 2008 to December 2023,of which 4 studies were performed with whole blood,4 with blood plasma,5 with blood serum,1 with serum neural cell adhesion molecule L1-captured extracellular vesicles,1 with blood cells,and 2 with peripheral blood mononuclear cells.Most of the studies involved children and the study cohorts were largely males.Many of the studies had performed microRNA sequencing or quantitative polymerase chain reaction assays to measure microRNA expression.Only five studies had used real-time polymerase chain reaction assay to validate microRNA expression in autism spectrum disorder subjects compared to controls.The microRNAs that were validated in these studies may be considered as potential candidate biomarkers for autism spectrum disorder and include miR-500a-5p,-197-5p,-424-5p,-664a-3p,-365a-3p,-619-5p,-664a-3p,-3135a,-328-3p,and-500a-5p in blood plasma and miR-151a-3p,-181b-5p,-320a,-328,-433,-489,-572,-663a,-101-3p,-106b-5p,-19b-3p,-195-5p,and-130a-3p in blood serum of children,and miR-15b-5p and-6126 in whole blood of adults.Several important limitations were identified in the studies reviewed,and need to be taken into account in future studies.Further studies are warranted with children and adults having different levels of autism spectrum disorder severity and consideration should be given to using animal models of autism spectrum disorder to investigate the effects of suppressing or overexpressing specific microRNAs as a novel therapy.
文摘L波段数字航空通信系统(L band digital aeronautical communication system,LDACS)是未来航空宽带通信重要的基础设施之一,针对LDACS信号容易受到相邻波道大功率测距仪(distance measuring equipment,DME)信号干扰的问题,提出了联合正交投影干扰抑制与单快拍稀疏分解的波达方向(direction of arrival,DOA)估计方法。通过子空间投影抑制DME干扰,然后使用单快拍数据构建伪协方差矩阵,对伪协方差矩阵求高阶幂,之后进行奇异值分解,并利用约束条件求解稀疏解得到期望信号来向的估计值。所提方法使用高阶伪协方差矩阵降低了噪声影响,仅用单快拍就可以准确估计LDACS信号的入射方向。仿真结果表明,改进单快拍高级幂(improved single snapshot high order power,ISS-HOP)L1-SVD算法的估计精度优于ISS-HOP-MUSIC算法。该方法可以有效抑制DME干扰,提高OFDM接收机性能。