期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
l_(1)-norm Based GWLP for Robust Frequency Estimation
1
作者 Yuan Chen Liangtao Duan +1 位作者 Weize Sun Jingxin Xu 《Journal on Big Data》 2019年第3期107-116,共10页
In this work,we address the frequency estimation problem of a complex single-tone embedded in the heavy-tailed noise.With the use of the linear prediction(LP)property and l_(1)-norm minimization,a robust frequency est... In this work,we address the frequency estimation problem of a complex single-tone embedded in the heavy-tailed noise.With the use of the linear prediction(LP)property and l_(1)-norm minimization,a robust frequency estimator is developed.Since the proposed method employs the weighted l_(1)-norm on the LP errors,it can be regarded as an extension of the l_(1)-generalized weighted linear predictor.Computer simulations are conducted in the environment of α-stable noise,indicating the superiority of the proposed algorithm,in terms of its robust to outliers and nearly optimal estimation performance. 展开更多
关键词 Robust frequency estimation linear prediction impulsive noise weighted l_(1)-norm minimization
下载PDF
Adaptive multiple subtraction using a constrained L1-norm method with lateral continuity 被引量:9
2
作者 Pang Tinghua Lu Wenkai Ma Yongjun 《Applied Geophysics》 SCIE CSCD 2009年第3期241-247,299,300,共9页
The Lt-norm method is one of the widely used matching filters for adaptive multiple subtraction. When the primaries and multiples are mixed together, the L1-norm method might damage the primaries, leading to poor late... The Lt-norm method is one of the widely used matching filters for adaptive multiple subtraction. When the primaries and multiples are mixed together, the L1-norm method might damage the primaries, leading to poor lateral continuity. In this paper, we propose a constrained L1-norm method for adaptive multiple subtraction by introducing the lateral continuity constraint for the estimated primaries. We measure the lateral continuity using prediction-error filters (PEF). We illustrate our method with the synthetic Pluto dataset. The results show that the constrained L1-norm method can simultaneously attenuate the multiples and preserve the primaries. 展开更多
关键词 Multiple attenuation adaptive multiple subtraction l1-norm lateral continuity
下载PDF
A NEURAL-BASED NONLINEAR L_1-NORM OPTIMIZATION ALGORITHM FOR DIAGNOSIS OF NETWORKS* 被引量:8
3
作者 He Yigang (Department of Electrical Engineering, Hunan University, Changsha 410082)Luo Xianjue Qiu Guanyuan(School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049) 《Journal of Electronics(China)》 1998年第4期365-371,共7页
Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault ... Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault location method(1982), a new nonlinearly constrained L1-norm problem is developed. It can be solved with less computing time through only one optimization processing. The proposed neural network can be used to solve the analog diagnosis L1 problem. The validity of the proposed neural networks and the fault location L1 method are illustrated by extensive computer simulations. 展开更多
关键词 FAUlT DIAGNOSIS l1-norm NEURAl OPTIMIZATION
下载PDF
Joint 2D DOA and Doppler frequency estimation for L-shaped array using compressive sensing 被引量:5
4
作者 WANG Shixin ZHAO Yuan +3 位作者 LAILA Ibrahim XIONG Ying WANG Jun TANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期28-36,共9页
A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven... A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm. 展开更多
关键词 electronic warfare l-shaped array joint parameter estimation l1-norm minimization Bayesian compressive sensing(CS) pair matching
下载PDF
ZONAL SPHERICAL POLYNOMIALS WITH MINIMAL L_1-NORM
5
作者 M. Reimer 《Analysis in Theory and Applications》 1995年第3期22-35,共14页
Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sens... Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sense of their L1-norm is attaining the minimum value. Such polynomials satisfy a complicated system of nonlinear e-quations (algebraic if the space dimension is odd, only) and also a singular differential equation of third order. The exact order of decay of the minimum value with respect to the polynomial degree is determined. By our results we can prove that some nodal systems on the sphere, which are defined by a minimum-property, are providing fundamental matrices which are diagonal-dominant or bounded with respect to the ∞-norm, at least, as the polynomial degree tends to infinity. 展开更多
关键词 ZONAl SPHERICAl POlYNOMIAlS WITH MINIMAl l1-norm
下载PDF
半参数回归模型非参数分量L_1模估计的最优收敛速度 被引量:1
6
作者 赵选民 孙浩 《纯粹数学与应用数学》 CSCD 1997年第2期6-11,共6页
对半参数回归模型,采用分段多项式逼近非参数函数,构造了参数与非参数分量L1模估计,并获得了非参数分量L1模估计的最优估计收敛速度为Op(n-m+r[2(m+r)+1]).
关键词 半参数回归模型 l_1模估计 最优收敛速度
下载PDF
相依样本下条件中位数L_1模核估计的相合性 被引量:2
7
作者 凌能祥 《数理统计与应用概率》 1997年第2期133-138,共6页
本文在样本序列为同分布的混合的情形下,研究了条件中位数L1模核估计的逐点强。
关键词 条件中位数 l1模核估计 Φ-混合 相合性 核估计
下载PDF
线性小波密度估计L_1-模相合性
8
作者 蒋凤瑛 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2000年第1期84-87,共4页
用小波方法对未知密度f(x)进行估计 ,并在某些假定下建立了一种估计量的L1-模强相合性 ,以及在某些限制下 ,弱相合与强相合的等价性 .顺便也给出L1-相合的一个必要条件 .
关键词 密度估计 小波 l1-模相结合 线性小波 数理统计
下载PDF
一个强耦合系统正解的L~∞(0,T;H^1(Ω)估计
9
作者 师建国 陈莹 《天中学刊》 2008年第2期14-15,26,共3页
运用能量方法,通过采用嵌入定理、内插不等式建立了非线性强耦合生态系统正解的L∞(0,T;H1(Ω))估计.
关键词 强耦合 能量方法 嵌入定理 内插不等式 l^∞(0 T H^1(Ω))估计
下载PDF
一个强耦合系统正解的L~∞(0,T;H^1(Ω))估计
10
作者 师建国 陈莹 《河南科学》 2008年第7期765-767,共3页
运用能量方法,通过采用嵌入定理、内插不等式建立了非线性强耦合生态系统正解的L(∞0,T;H(1Ω))估计.
关键词 强耦合 能量方法 嵌入定理 内插不等式 l∞(0 T H^1(Ω))估计
下载PDF
线程回归系数L_1估计弱相合性的一个必要条件
11
作者 陈希孺 Y.H.Wu 《湖南数学年刊》 1992年第Z1期1-8,共8页
设 Y_i=x′_iβ_0+e_i,i=1,…,n,为线性回归模型。此处 x_1,x_2,…为已知 p 维向量。以β_n 记β_0的 L_1估计,即设随机误差 e_1,e_2,…独立,med(e_i)=0,且存在正数 l_1,l_2,使 P(-h≤e_i≤0)≤l_1h≥P(0≤e_i≤h),0≤h≤l_2,i=1,2,…... 设 Y_i=x′_iβ_0+e_i,i=1,…,n,为线性回归模型。此处 x_1,x_2,…为已知 p 维向量。以β_n 记β_0的 L_1估计,即设随机误差 e_1,e_2,…独立,med(e_i)=0,且存在正数 l_1,l_2,使 P(-h≤e_i≤0)≤l_1h≥P(0≤e_i≤h),0≤h≤l_2,i=1,2,…则当时,β_n 不是β_0的弱相合估计。 展开更多
关键词 线性回归模型 l1估计 相合性
下载PDF
L_1范数支持向量机在代谢组学中的应用
12
作者 丁国辉 孙建强 +2 位作者 吴俊芳 黄慎 丁义明 《波谱学杂志》 CAS CSCD 北大核心 2015年第1期67-77,共11页
代谢组学是关于生物体内源性代谢物质的整体及其变化规律的科学,也是一个数据密集型的研究领域,由此使得模式识别在代谢数据处理中有重要作用.L1范数支持向量机(L1-Norm Support Vector Machines,L1-norm SVMs)作为在模式识别领域中准... 代谢组学是关于生物体内源性代谢物质的整体及其变化规律的科学,也是一个数据密集型的研究领域,由此使得模式识别在代谢数据处理中有重要作用.L1范数支持向量机(L1-Norm Support Vector Machines,L1-norm SVMs)作为在模式识别领域中准确、稳健的方法,在代谢组学中的应用较少.该文应用L1-norm SVM方法对小鼠感染血吸虫后的代谢数据进行了分析,分析结果显示L1-norm SVM在聚类与特征选择方面具有优势,并表明它在代谢组学领域的应用有着潜力和前景. 展开更多
关键词 模式识别 l1范数支持向量机(l1-norm SVM):正交偏最小二乘(O-PlS)代谢组学 核磁共振(NMR)
下载PDF
A Semi-Supervised WLAN Indoor Localization Method Based on l1-Graph Algorithm 被引量:1
13
作者 Liye Zhang Lin Ma Yubin Xu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第4期55-61,共7页
For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be colle... For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be collected in offline phase. Therefore,collecting training data with positioning information is time consuming which becomes the bottleneck of WLAN indoor localization. In this paper,the traditional semisupervised learning method based on k-NN and ε-NN graph for reducing collection workload of offline phase are analyzed,and the result shows that the k-NN or ε-NN graph are sensitive to data noise,which limit the performance of semi-supervised learning WLAN indoor localization system. Aiming at the above problem,it proposes a l1-graph-algorithm-based semi-supervised learning( LG-SSL) indoor localization method in which the graph is built by l1-norm algorithm. In our system,it firstly labels the unlabeled data using LG-SSL and labeled data to build the Radio Map in offline training phase,and then uses LG-SSL to estimate user's location in online phase. Extensive experimental results show that,benefit from the robustness to noise and sparsity ofl1-graph,LG-SSL exhibits superior performance by effectively reducing the collection workload in offline phase and improving localization accuracy in online phase. 展开更多
关键词 indoor location estimation l1-graph algorithm semi-supervised learning wireless local area networks(WlAN)
下载PDF
L1范数探测粗差失效的观测量识别方法 被引量:2
14
作者 闫广峰 岑敏仪 《测绘学报》 EI CSCD 北大核心 2019年第11期1430-1438,共9页
粗差发生时,L 1范数估计求得的条件方程闭合差较最小二乘估计(LS)的残差更能集中反映粗差,从而有助于粗差的发现与定位。然而,存在一类观测值,虽然其具有粗差发现和定位能力,但在采用L 1范数估计解决粗差探测问题时,无论含有多大量级粗... 粗差发生时,L 1范数估计求得的条件方程闭合差较最小二乘估计(LS)的残差更能集中反映粗差,从而有助于粗差的发现与定位。然而,存在一类观测值,虽然其具有粗差发现和定位能力,但在采用L 1范数估计解决粗差探测问题时,无论含有多大量级粗差都不能准确定位,为叙述方便,称其为L 1抗差性失效点(robustness failpoint in L 1-norm estimation,RFP-L 1)。显然,只有判定测量系统不存在RFP-L 1,或存在时能够准确判断其是否含有粗差,才能保证基于L 1的粗差探测结果的准确、可靠,此过程中,RFP-L 1的识别是问题解决的基础。本文由条件方程,推导出观测值粗差对条件方程闭合差绝对值和的影响系数计算式,得到了最小影响系数大小与观测值是否为RFP-L 1的判别关系,并探讨了存在RFP-L 1的测量系统设计矩阵数值特点,提出了判断RFP-L 1观测值的方法。仿真试验表明,最小影响系数反映了观测值粗差对L 1范数估计目标函数的影响大小,非RFP-L 1和RFP-L 1的最小影响系数具有分别等于1和小于1的规律性,同时得出,若观测方程中系数矩阵只有±1和0,对应的观测量均不属于RFP-L 1。 展开更多
关键词 l1范数估计 粗差探测 条件方程 影响系数
下载PDF
Association RuleMining Frequent-Pattern-Based Intrusion Detection in Network
15
作者 S.Sivanantham V.Mohanraj +1 位作者 Y.Suresh J.Senthilkumar 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1617-1631,共15页
In the network security system,intrusion detection plays a significant role.The network security system detects the malicious actions in the network and also conforms the availability,integrity and confidentiality of da... In the network security system,intrusion detection plays a significant role.The network security system detects the malicious actions in the network and also conforms the availability,integrity and confidentiality of data informa-tion resources.Intrusion identification system can easily detect the false positive alerts.If large number of false positive alerts are created then it makes intrusion detection system as difficult to differentiate the false positive alerts from genuine attacks.Many research works have been done.The issues in the existing algo-rithms are more memory space and need more time to execute the transactions of records.This paper proposes a novel framework of network security Intrusion Detection System(IDS)using Modified Frequent Pattern(MFP-Tree)via K-means algorithm.The accuracy rate of Modified Frequent Pattern Tree(MFPT)-K means method infinding the various attacks are Normal 94.89%,for DoS based attack 98.34%,for User to Root(U2R)attacks got 96.73%,Remote to Local(R2L)got 95.89%and Probe attack got 92.67%and is optimal when it is compared with other existing algorithms of K-Means and APRIORI. 展开更多
关键词 IDS K-MEANS frequent pattern tree false alert MINING l1-norm
下载PDF
Bearings Intelligent Fault Diagnosis by 1-D Adder Neural Networks
16
作者 Jian Tang Chao Wei +3 位作者 Quanchang Li Yinjun Wang Xiaoxi Ding Wenbin Huang 《Journal of Dynamics, Monitoring and Diagnostics》 2022年第3期160-168,共9页
Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during ... Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during their use.However,because of the resource limitations of the end device,processors in the intelligent bearing are unable to carry the computational load of deep learning models like convolutional neural network(CNN),which involves a great amount of multiplicative operations.To minimize the computation cost of the conventional CNN,based on the idea of AdderNet,a 1-D adder neural network with a wide first-layer kernel(WAddNN)suitable for bearing fault diagnosis is proposed in this paper.The proposed method uses the l1-norm distance between filters and input features as the output response,thus making the whole network almost free of multiplicative operations.The whole model takes the original signal as the input,uses a wide kernel in the first adder layer to extract features and suppress the high frequency noise,and then uses two layers of small kernels for nonlinear mapping.Through experimental comparison with CNN models of the same structure,WAddNN is able to achieve a similar accuracy as CNN models with significantly reduced computational cost.The proposed model provides a new fault diagnosis method for intelligent bearings with limited resources. 展开更多
关键词 adder neural network convolutional neural network fault diagnosis intelligent bearings l1-norm distance
下载PDF
A Study on the Nonlinear Caputo-Type Snakebite Envenoming Model with Memory
17
作者 Pushpendra Kumar Vedat Suat Erturk +1 位作者 V.Govindaraj Dumitru Baleanu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2487-2506,共20页
In this article,we introduce a nonlinear Caputo-type snakebite envenoming model with memory.The well-known Caputo fractional derivative is used to generalize the previously presented integer-order model into a fractio... In this article,we introduce a nonlinear Caputo-type snakebite envenoming model with memory.The well-known Caputo fractional derivative is used to generalize the previously presented integer-order model into a fractionalorder sense.The numerical solution of the model is derived from a novel implementation of a finite-difference predictor-corrector(L1-PC)scheme with error estimation and stability analysis.The proof of the existence and positivity of the solution is given by using the fixed point theory.From the necessary simulations,we justify that the first-time implementation of the proposedmethod on an epidemicmodel shows that the scheme is fully suitable and time-efficient for solving epidemic models.This work aims to show the novel application of the given scheme as well as to check how the proposed snakebite envenoming model behaves in the presence of the Caputo fractional derivative,including memory effects. 展开更多
关键词 Mathematical model Caputo fractional derivative l1-predictor-corrector method error estimation stability graphical simulations
下载PDF
L_1-Norm Estimation and Random Weighting Method in a Semiparametric Model 被引量:3
18
作者 Liu-genXue Li-xingZhu 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2005年第2期295-302,共8页
In this paper, the L_1-norm estimators and the random weighted statistic fora semiparametric regression model are constructed, the strong convergence rates of estimators areobtain under certain conditions, the strong ... In this paper, the L_1-norm estimators and the random weighted statistic fora semiparametric regression model are constructed, the strong convergence rates of estimators areobtain under certain conditions, the strong efficiency of the random weighting method is shown. Asimulation study is conducted to compare the L_1-norm estimator with the least square estimator interm of approximate accuracy, and simulation results are given for comparison between the randomweighting method and normal approximation method. 展开更多
关键词 l_1-norm estimation random weighting method semiparametric regression model
原文传递
基于0-1规划的规则中文文件碎片自动拼接技术 被引量:1
19
作者 蓝洋 和亮 《计算机系统应用》 2015年第4期270-273,共4页
为了实现规则中文文件碎片的拼接,研究了规则碎片文件中汉字文本的特征,提出了文件碎片中文本行信息的提取方法,定义了基于L1-norm的碎片边界差异度概念,建立了基于0-1规划的文件碎片拼接模型,并运用聚类分析降低了算法复杂度.与现有同... 为了实现规则中文文件碎片的拼接,研究了规则碎片文件中汉字文本的特征,提出了文件碎片中文本行信息的提取方法,定义了基于L1-norm的碎片边界差异度概念,建立了基于0-1规划的文件碎片拼接模型,并运用聚类分析降低了算法复杂度.与现有同类算法相比,本文的算法无需使用人工干预即可完成正确拼接. 展开更多
关键词 规则碎片拼接 0-1规划 聚类分析 文本特征提取 l1-norm
下载PDF
Robust Latent Factor Analysis for Precise Representation of High-Dimensional and Sparse Data 被引量:5
20
作者 Di Wu Xin Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第4期796-805,共10页
High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurat... High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices. 展开更多
关键词 High-dimensional and sparse matrix l1-norm l2 norm latent factor model recommender system smooth l1-norm
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部