期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A Family of Characteristic Discontinuous Galerkin Methods for Transient Advection-Diffusion Equations and Their Optimal-Order L2 Error Estimates 被引量:1
1
作者 Kaixin Wang Hong Wang +1 位作者 Mohamed Al-Lawatia Hongxing Rui 《Communications in Computational Physics》 SCIE 2009年第6期203-230,共28页
We develop a family of characteristic discontinuous Galerkin methods for transient advection-diffusion equations,including the characteristic NIPG,OBB,IIPG,and SIPG schemes.The derived schemes possess combined advanta... We develop a family of characteristic discontinuous Galerkin methods for transient advection-diffusion equations,including the characteristic NIPG,OBB,IIPG,and SIPG schemes.The derived schemes possess combined advantages of EulerianLagrangian methods and discontinuous Galerkin methods.An optimal-order error estimate in the L2 norm and a superconvergence estimate in a weighted energy norm are proved for the characteristic NIPG,IIPG,and SIPG scheme.Numerical experiments are presented to confirm the optimal-order spatial and temporal convergence rates of these schemes as proved in the theorems and to show that these schemes compare favorably to the standard NIPG,OBB,IIPG,and SIPG schemes in the context of advection-diffusion equations. 展开更多
关键词 Advection-diffusion equation characteristic method discontinuous Galerkin method numerical analysis optimal-order l2 error estimate superconvergence estimate
原文传递
THE BEST L2 NORM ERROR ESTIMATE OF LOWER ORDER FINITE ELEMENT METHODS FOR THE FOURTH ORDER PROBLEM 被引量:1
2
作者 Jun Hu Zhong-Ci Shi 《Journal of Computational Mathematics》 SCIE CSCD 2012年第5期449-460,共12页
In the paper, we analyze the L2 norm error estimate of lower order finite element methods for the fourth order problem. We prove that the best error estimate in the L2 norm of the finite element solution is of second ... In the paper, we analyze the L2 norm error estimate of lower order finite element methods for the fourth order problem. We prove that the best error estimate in the L2 norm of the finite element solution is of second order, which can not be improved generally. The main ingredients are the saturation condition established for these elements and an identity for the error in the energy norm of the finite element solution. The result holds for most of the popular lower order finite element methods in the literature including: the Powell-Sabin C1 -P2 macro element, the nonconforming Morley element, the C1 -Q2 macro element, the nonconforming rectangle Morley element, and the nonconforming incomplete biquadratic element. In addition, the result actually applies to the nonconforming Adini element, the nonconforming Fraeijs de Veubeke elements, and the nonconforming Wang- Xu element and the Wang-Shi-Xu element provided that the saturation condition holds for them. This result solves one long standing problem in the literature: can the L2 norm error estimate of lower order finite element methods of the fourth order problem be two order higher than the error estimate in the energy norm? 展开更多
关键词 l2 norm error estimate Energy norm error estimate Conforming Noncon-forming The Kirchhoff plate.
原文传递
Upwind finite difference method for miscible oil and water displacement problem with moving boundary values
3
作者 袁益让 李长峰 +1 位作者 杨成顺 韩玉笈 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第11期1365-1378,共14页
The research of the miscible oil and water displacement problem with moving boundary values is of great value to the history of oil-gas transport and accumulation in the basin evolution as well as to the rational eval... The research of the miscible oil and water displacement problem with moving boundary values is of great value to the history of oil-gas transport and accumulation in the basin evolution as well as to the rational evaluation in prospecting and exploiting oil-gas resources. The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary values. For the twodimensional bounded region, the upwind finite difference schemes are proposed. Some techniques, such as the calculus of variations, the change of variables, and the theory of a priori estimates, are used. The optimal orderl2-norm estimates are derived for the errors in the approximate solutions. The research is important both theoretically and practically for the model analysis in the field, the model numerical method, and the software development. 展开更多
关键词 compressible displacement moving boundary upwind finite difference frac-tional steps l2 error estimate
下载PDF
Quadratic Finite Volume Element Schemes over Triangular Meshes for a Nonlinear Time-Fractional Rayleigh-Stokes Problem
4
作者 Yanlong Zhang Yanhui Zhou Jiming Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第5期487-514,共28页
In this article,we study a 2D nonlinear time-fractional Rayleigh-Stokes problem,which has an anomalous subdiffusion term,on triangular meshes by quadratic finite volume element schemes.Time-fractional derivative,defin... In this article,we study a 2D nonlinear time-fractional Rayleigh-Stokes problem,which has an anomalous subdiffusion term,on triangular meshes by quadratic finite volume element schemes.Time-fractional derivative,defined by Caputo fractional derivative,is discretized through L2−1σformula,and a two step scheme is used to approximate the time first-order derivative at time tn−α/2,where the nonlinear term is approximated by using a matching linearized difference scheme.A family of quadratic finite volume element schemes with two parameters are proposed for the spatial discretization,where the range of values for two parameters areβ1∈(0,1/2),β2∈(0,2/3).For testing the precision of numerical algorithms,we calculate some numerical examples which have known exact solution or unknown exact solution by several kinds of quadratic finite volume element schemes,and contrast with the results of an existing quadratic finite element scheme by drawing diversified comparison plots and showing the detailed data of L2 error results and convergence orders.Numerical results indicate that,L2 error estimate of one scheme with parameters β_(1)=(3−√3)/6,β2=(6+√3−√21+6√3)/9 is O(h^(3)+△t^(2)),and L^(2) error estimates of other schemes are O(h^(2)+△t^(2)),where h and △t denote the spatial and temporal discretization parameters,respectively. 展开更多
关键词 Quadratic finite volume element schemes anomalous sub-diffusion term l2 error estimate quadratic finite element scheme
下载PDF
CONVERGENCE ANALYSIS OF MIXED VOLUME ELEMENT-CHARACTERISTIC MIXED VOLUME ELEMENT FOR THREE-DIMENSIONAL CHEMICAL OIL-RECOVERY SEEPAGE COUPLED PROBLEM
5
作者 袁益让 程爱杰 +2 位作者 羊丹平 李长峰 杨青 《Acta Mathematica Scientia》 SCIE CSCD 2018年第2期519-545,共27页
The physical model is described by a seepage coupled system for simulating numerically three-dimensional chemical oil recovery, whose mathematical description includes three equations to interpret main concepts. The p... The physical model is described by a seepage coupled system for simulating numerically three-dimensional chemical oil recovery, whose mathematical description includes three equations to interpret main concepts. The pressure equation is a nonlinear parabolic equation, the concentration is defined by a convection-diffusion equation and the saturations of different components are stated by nonlinear convection-diffusion equations. The transport pressure appears in the concentration equation and saturation equations in the form of Darcy velocity, and controls their processes. The flow equation is solved by the conservative mixed volume element and the accuracy is improved one order for approximating Darcy velocity. The method of characteristic mixed volume element is applied to solve the concentration, where the diffusion is discretized by a mixed volume element method and the convection is treated by the method of characteristics. The characteristics can confirm strong computational stability at sharp fronts and it can avoid numerical dispersion and nonphysical oscillation. The scheme can adopt a large step while its numerical results have small time-truncation error and high order of accuracy. The mixed volume element method has the law of conservation on every element for the diffusion and it can obtain numerical solutions of the concentration and adjoint vectors. It is most important in numerical simulation to ensure the physical conservative nature. The saturation different components are obtained by the method of characteristic fractional step difference. The computational work is shortened greatly by decomposing a three-dimensional problem into three successive one-dimensional problems and it is completed easily by using the algorithm of speedup. Using the theory and technique of a priori estimates of differential equations, we derive an optimal second order estimates in 12 norm. Numerical examples are given to show the effectiveness and practicability and the method is testified as a powerful tool to solve the important problems. 展开更多
关键词 Chemical oil recovery mixed volume element-characteristic mixed volume element characteristic fractional step differences local conservation of mass second-order error estimate in l2-norm
下载PDF
THE MODIFIED METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OPERATOR-SPLITTING PROCEDURES FOR COMPRESSIBLE MULTICOMPONENT DISPLACEMENT PROBLEM 被引量:1
6
作者 YUAN Yirang (Institute of Mathematics, Shandong University, Jinan 250100, China) 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2003年第1期30-45,共16页
For the three-dimensional compressible multicomponent displacement problem we put forward the modified method of characteristics with finite element operator-splitting procedures and make use of operator-splitting,cha... For the three-dimensional compressible multicomponent displacement problem we put forward the modified method of characteristics with finite element operator-splitting procedures and make use of operator-splitting,characteristic method,calculus of variations,energy method,negative norm estimate,two kinds of test functions and the theory of prior estimates and techniques.Optimal order estimates in L^2 norm are derived for the error in the approximate solution.These methods have been successfully used in oil-gas resources estimation,enhanced oil recovery simulation and seawater intrusion numerical simulation. 展开更多
关键词 Multicomponent displacement 3-dimensional compressibility OPERATOR-SPLITTING characteristics finite element optimal order l2 error estimates.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部