A nonlinear parabolic system is derived to describe incompressible nuclear waste-disposal contamination in porous media. A sequential implicit tirne-stepping is defined, in which the pressure and Darcy velocity of the...A nonlinear parabolic system is derived to describe incompressible nuclear waste-disposal contamination in porous media. A sequential implicit tirne-stepping is defined, in which the pressure and Darcy velocity of the mixture are approximated simultaneously by a mixed finite element method and the brine, radionuclid and heat are treated by a combination of a Galerkin finite element method and the method of characteristics. Optimal-order convergence in L2 is proved. Time-truncation errors of standard procedures are reduced by time stepping along the characteristics of the hyperbolic part of the brine, radionuclide and heal equalios, temporal and spatial error are lossened by direct compulation of the velocity in the mixed method, as opposed to differentiation of the pressure.展开更多
We’ll study the FEM for a model for compressible miscible displacement in porous media which includes molecular diffusion and mechanical dispersion in one-dimensional space.A class of vertices-edges-elements interpol...We’ll study the FEM for a model for compressible miscible displacement in porous media which includes molecular diffusion and mechanical dispersion in one-dimensional space.A class of vertices-edges-elements interpolation operator ink is introduced.With the help of ink(not elliptic projection),the optimal error estimate in L∞(J;L2(Ω)) norm of FEM is proved.展开更多
Minimax state estimation is discussed for uncerttain systems with L2 bounded constraint. A dtaity relation-equality is introduced to estimate terminal state variabes x(T) by measurable outputs . hawing a game theory, ...Minimax state estimation is discussed for uncerttain systems with L2 bounded constraint. A dtaity relation-equality is introduced to estimate terminal state variabes x(T) by measurable outputs . hawing a game theory, opti-mal estimation leads to a simple solution. LQL control scheme, is further discussed to make it rational in the actual application.展开更多
This paper is concerned with the stability of the rarefaction wave for the generalized KdV-Burgers equation [GRAPHICS] Roughly speaking, under the assumption that u(-) < u(+), the solution u(x, t) to Cauchy problem...This paper is concerned with the stability of the rarefaction wave for the generalized KdV-Burgers equation [GRAPHICS] Roughly speaking, under the assumption that u(-) < u(+), the solution u(x, t) to Cauchy problem (1) satisfying (sup)(x&ISIN;R)\u(x, t) - u(R)(x/t)\ --> 0 as t --> infinity, where u(R)(x/t) is the rarefaction wave of the non-viscous Burgers equation u(t) + f(u)(x) = 0 with Riemann initial data [GRAPHICS]展开更多
We develop a family of characteristic discontinuous Galerkin methods for transient advection-diffusion equations,including the characteristic NIPG,OBB,IIPG,and SIPG schemes.The derived schemes possess combined advanta...We develop a family of characteristic discontinuous Galerkin methods for transient advection-diffusion equations,including the characteristic NIPG,OBB,IIPG,and SIPG schemes.The derived schemes possess combined advantages of EulerianLagrangian methods and discontinuous Galerkin methods.An optimal-order error estimate in the L2 norm and a superconvergence estimate in a weighted energy norm are proved for the characteristic NIPG,IIPG,and SIPG scheme.Numerical experiments are presented to confirm the optimal-order spatial and temporal convergence rates of these schemes as proved in the theorems and to show that these schemes compare favorably to the standard NIPG,OBB,IIPG,and SIPG schemes in the context of advection-diffusion equations.展开更多
A 2-dimensional, multicomponent, multiphase, and incompressible compositional reservoir simulator has been developed and applied to chemical flooding (surfactants, alcohol and polymers) and convergence analysis. The c...A 2-dimensional, multicomponent, multiphase, and incompressible compositional reservoir simulator has been developed and applied to chemical flooding (surfactants, alcohol and polymers) and convergence analysis. The characteristic finite difference methods for 2-dimensional enhanced oil recovery can be described as a coupled system of nonlinear partial differential equations. For a generic case of the cross interference and bounded region, we put forward a kind of characteristic finite difference schemes and make use of thick and thin grids to form a complete set, and of calculus of variations, the theory of prior estimates and techniques. Optimal order estimates in L^2 norm are derived for the error in the approximate solutions. Thus we have thoroughly solved the well-known theoretical problem proposed by a famous scientist, J. Douglas, Jr.展开更多
基金The research was supported by the Natural Science Foundation of China
文摘A nonlinear parabolic system is derived to describe incompressible nuclear waste-disposal contamination in porous media. A sequential implicit tirne-stepping is defined, in which the pressure and Darcy velocity of the mixture are approximated simultaneously by a mixed finite element method and the brine, radionuclid and heat are treated by a combination of a Galerkin finite element method and the method of characteristics. Optimal-order convergence in L2 is proved. Time-truncation errors of standard procedures are reduced by time stepping along the characteristics of the hyperbolic part of the brine, radionuclide and heal equalios, temporal and spatial error are lossened by direct compulation of the velocity in the mixed method, as opposed to differentiation of the pressure.
基金This research is supported by the Foundation for Talents for Next Century of Shandong University
文摘We’ll study the FEM for a model for compressible miscible displacement in porous media which includes molecular diffusion and mechanical dispersion in one-dimensional space.A class of vertices-edges-elements interpolation operator ink is introduced.With the help of ink(not elliptic projection),the optimal error estimate in L∞(J;L2(Ω)) norm of FEM is proved.
文摘Minimax state estimation is discussed for uncerttain systems with L2 bounded constraint. A dtaity relation-equality is introduced to estimate terminal state variabes x(T) by measurable outputs . hawing a game theory, opti-mal estimation leads to a simple solution. LQL control scheme, is further discussed to make it rational in the actual application.
文摘This paper is concerned with the stability of the rarefaction wave for the generalized KdV-Burgers equation [GRAPHICS] Roughly speaking, under the assumption that u(-) < u(+), the solution u(x, t) to Cauchy problem (1) satisfying (sup)(x&ISIN;R)\u(x, t) - u(R)(x/t)\ --> 0 as t --> infinity, where u(R)(x/t) is the rarefaction wave of the non-viscous Burgers equation u(t) + f(u)(x) = 0 with Riemann initial data [GRAPHICS]
文摘We develop a family of characteristic discontinuous Galerkin methods for transient advection-diffusion equations,including the characteristic NIPG,OBB,IIPG,and SIPG schemes.The derived schemes possess combined advantages of EulerianLagrangian methods and discontinuous Galerkin methods.An optimal-order error estimate in the L2 norm and a superconvergence estimate in a weighted energy norm are proved for the characteristic NIPG,IIPG,and SIPG scheme.Numerical experiments are presented to confirm the optimal-order spatial and temporal convergence rates of these schemes as proved in the theorems and to show that these schemes compare favorably to the standard NIPG,OBB,IIPG,and SIPG schemes in the context of advection-diffusion equations.
基金Project supported by the National Scaling Program and the National Eighth-Five-Year Tackling Key Problems Program
文摘A 2-dimensional, multicomponent, multiphase, and incompressible compositional reservoir simulator has been developed and applied to chemical flooding (surfactants, alcohol and polymers) and convergence analysis. The characteristic finite difference methods for 2-dimensional enhanced oil recovery can be described as a coupled system of nonlinear partial differential equations. For a generic case of the cross interference and bounded region, we put forward a kind of characteristic finite difference schemes and make use of thick and thin grids to form a complete set, and of calculus of variations, the theory of prior estimates and techniques. Optimal order estimates in L^2 norm are derived for the error in the approximate solutions. Thus we have thoroughly solved the well-known theoretical problem proposed by a famous scientist, J. Douglas, Jr.