Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sens...Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sense of their L1-norm is attaining the minimum value. Such polynomials satisfy a complicated system of nonlinear e-quations (algebraic if the space dimension is odd, only) and also a singular differential equation of third order. The exact order of decay of the minimum value with respect to the polynomial degree is determined. By our results we can prove that some nodal systems on the sphere, which are defined by a minimum-property, are providing fundamental matrices which are diagonal-dominant or bounded with respect to the ∞-norm, at least, as the polynomial degree tends to infinity.展开更多
In this paper, polynomial fuzzy neural network classifiers (PFNNCs) is proposed by means of density fuzzy c-means and L2-norm regularization. The overall design of PFNNCs was realized by means of fuzzy rules that come...In this paper, polynomial fuzzy neural network classifiers (PFNNCs) is proposed by means of density fuzzy c-means and L2-norm regularization. The overall design of PFNNCs was realized by means of fuzzy rules that come in form of three parts, namely premise part, consequence part and aggregation part. The premise part was developed by density fuzzy c-means that helps determine the apex parameters of membership functions, while the consequence part was realized by means of two types of polynomials including linear and quadratic. L2-norm regularization that can alleviate the overfitting problem was exploited to estimate the parameters of polynomials, which constructed the aggregation part. Experimental results of several data sets demonstrate that the proposed classifiers show higher classification accuracy in comparison with some other classifiers reported in the literature.展开更多
A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven...A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.展开更多
High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurat...High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices.展开更多
We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every bl...We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every block s-sparse signal can be recovered through the proposed mixed l2/ll-minimization approach in the noiseless case and is stably recovered in the presence of noise and mismodeling error. This improves the result of Eldar and Mishali (in IEEE Trans. Inform. Theory 55: 5302-5316, 2009). We also give another sufficient condition on block RIP for such recovery method: 58 〈 0.307.展开更多
In this paper,we investigate truncated l2\l1-2 minimization and its associated alternating direction method of multipliers(ADMM)algorithm for recovering the block sparse signals.Based on the block restricted isometry ...In this paper,we investigate truncated l2\l1-2 minimization and its associated alternating direction method of multipliers(ADMM)algorithm for recovering the block sparse signals.Based on the block restricted isometry property(Block-RIP),a theoretical analysis is presen ted to guarantee the validity of proposed method.Our theore tical resul ts not only show a less error upper bound,but also promote the former recovery condition of truncated l1-2 method for sparse signal recovery.Besides,the algorithm has been compared with some state-of-the-art algorithms and numerical experiments have shown excellent performances on recovering the block sparse signals.展开更多
Increasing the robustness to the unknown uncertainty and simultaneously enhancing the sensibility to the faults is one of the important issues considered in the fault detection development. Considering the L2-gain of ...Increasing the robustness to the unknown uncertainty and simultaneously enhancing the sensibility to the faults is one of the important issues considered in the fault detection development. Considering the L2-gain of residual system, this paper deals the observer-based fault detection problem. By using of H∞ control theory,an LMI approach to design fault detection observer is given. A numerical example is used to illustrate the effectiveness of the proposed approach.展开更多
Based on the range space property (RSP), the equivalent conditions between nonnegative solutions to the partial sparse and the corresponding weighted l1-norm minimization problem are studied in this paper. Different...Based on the range space property (RSP), the equivalent conditions between nonnegative solutions to the partial sparse and the corresponding weighted l1-norm minimization problem are studied in this paper. Different from other conditions based on the spark property, the mutual coherence, the null space property (NSP) and the restricted isometry property (RIP), the RSP- based conditions are easier to be verified. Moreover, the proposed conditions guarantee not only the strong equivalence, but also the equivalence between the two problems. First, according to the foundation of the strict complemenrarity theorem of linear programming, a sufficient and necessary condition, satisfying the RSP of the sensing matrix and the full column rank property of the corresponding sub-matrix, is presented for the unique nonnegative solution to the weighted l1-norm minimization problem. Then, based on this condition, the equivalence conditions between the two problems are proposed. Finally, this paper shows that the matrix with the RSP of order k can guarantee the strong equivalence of the two problems.展开更多
The physical model is described by a seepage coupled system for simulating numerically three-dimensional chemical oil recovery, whose mathematical description includes three equations to interpret main concepts. The p...The physical model is described by a seepage coupled system for simulating numerically three-dimensional chemical oil recovery, whose mathematical description includes three equations to interpret main concepts. The pressure equation is a nonlinear parabolic equation, the concentration is defined by a convection-diffusion equation and the saturations of different components are stated by nonlinear convection-diffusion equations. The transport pressure appears in the concentration equation and saturation equations in the form of Darcy velocity, and controls their processes. The flow equation is solved by the conservative mixed volume element and the accuracy is improved one order for approximating Darcy velocity. The method of characteristic mixed volume element is applied to solve the concentration, where the diffusion is discretized by a mixed volume element method and the convection is treated by the method of characteristics. The characteristics can confirm strong computational stability at sharp fronts and it can avoid numerical dispersion and nonphysical oscillation. The scheme can adopt a large step while its numerical results have small time-truncation error and high order of accuracy. The mixed volume element method has the law of conservation on every element for the diffusion and it can obtain numerical solutions of the concentration and adjoint vectors. It is most important in numerical simulation to ensure the physical conservative nature. The saturation different components are obtained by the method of characteristic fractional step difference. The computational work is shortened greatly by decomposing a three-dimensional problem into three successive one-dimensional problems and it is completed easily by using the algorithm of speedup. Using the theory and technique of a priori estimates of differential equations, we derive an optimal second order estimates in 12 norm. Numerical examples are given to show the effectiveness and practicability and the method is testified as a powerful tool to solve the important problems.展开更多
Abstract This paper studies the problem of minimizing a homogeneous polynomial (form) f(x) over the unit sphere Sn-1 = {x ∈ R^n: ||X||2 = 1}. The problem is NP-hard when f(x) has degree 3 or higher. Denote...Abstract This paper studies the problem of minimizing a homogeneous polynomial (form) f(x) over the unit sphere Sn-1 = {x ∈ R^n: ||X||2 = 1}. The problem is NP-hard when f(x) has degree 3 or higher. Denote by fmin (resp. fmax) the minimum (resp. maximum) value of f(x) on S^n-1. First, when f(x) is an even form of degree 2d, we study the standard sum of squares (SOS) relaxation for finding a lower bound of the minimum .fmin :max γ s.t.f(x)-γ.||x||2^2d is SOS.Let fos be be the above optimal value. Then we show that for all n ≥ 2d,Here, the constant C(d) is independent of n. Second, when f(x) is a multi-form and ^-1 becomes a muilti-unit sphere, we generalize the above SOS relaxation and prove a similar bound. Third, when f(x) is sparse, we prove an improved bound depending on its sparsity pattern; when f(x) is odd, we formulate the problem equivalently as minimizing a certain even form, and prove a similar bound. Last, for minimizing f(x) over a hypersurface H(g) = {x E lRn: g(x) = 1} defined by a positive definite form g(x), we generalize the above SOS relaxation and prove a similar bound.展开更多
In this paper,we consider the recovery of block sparse signals,whose nonzero entries appear in blocks (or clusters)rather than spread arbitrarily throughout the signal,from incomplete linear measurements.A high order ...In this paper,we consider the recovery of block sparse signals,whose nonzero entries appear in blocks (or clusters)rather than spread arbitrarily throughout the signal,from incomplete linear measurements.A high order sufficient condition based on block RIP is obtained to guarantee the stable recovery of all block sparse signals in the presence of noise,and robust recovery when signals are not exactly block sparse via mixed l2/l1 minimization.Moreover,a concrete example is established to ensure the condition is sharp.The significance of the results presented in this paper lies in the fact that recovery may be possible under more general conditions by exploiting the block structure of the sparsity pattern instead of the conventional sparsity pattern.展开更多
The orthogonal signals of multi-carrier-frequency emission and multiple antennas receipt module are used in SIAR radar.The corresponding received echo is equivalent to non-uniform spatial sampling after the frequency ...The orthogonal signals of multi-carrier-frequency emission and multiple antennas receipt module are used in SIAR radar.The corresponding received echo is equivalent to non-uniform spatial sampling after the frequency diversity process.As using the traditional Fourier transform will result in the target spectral with large sidelobe,the method presented in this paper firstly makes the preordering treatment for the position of the received antenna.Then,the Bayesian maximum posteriori estimation with l2-norm weighted constraint is utilized to achieve the equivalent uniform array echo.The simulations present the spectrum estimation in angle precision estimation of multiple targets under different SNRs,different virtual antenna numbers and different elevations.The estimation results confirm the advantage of SIAR radar both in array expansion and angle estimation.展开更多
For several decades, much attention has been paid to the two-sample Behrens-Fisher (BF) problem which tests the equality of the means or mean vectors of two normal populations with unequal variance/covariance structur...For several decades, much attention has been paid to the two-sample Behrens-Fisher (BF) problem which tests the equality of the means or mean vectors of two normal populations with unequal variance/covariance structures. Little work, however, has been done for the k-sample BF problem for high dimensional data which tests the equality of the mean vectors of several high-dimensional normal populations with unequal covariance structures. In this paper we study this challenging problem via extending the famous Scheffe’s transformation method, which reduces the k-sample BF problem to a one-sample problem. The induced one-sample problem can be easily tested by the classical Hotelling’s T 2 test when the size of the resulting sample is very large relative to its dimensionality. For high dimensional data, however, the dimensionality of the resulting sample is often very large, and even much larger than its sample size, which makes the classical Hotelling’s T 2 test not powerful or not even well defined. To overcome this difficulty, we propose and study an L 2-norm based test. The asymptotic powers of the proposed L 2-norm based test and Hotelling’s T 2 test are derived and theoretically compared. Methods for implementing the L 2-norm based test are described. Simulation studies are conducted to compare the L 2-norm based test and Hotelling’s T 2 test when the latter can be well defined, and to compare the proposed implementation methods for the L 2-norm based test otherwise. The methodologies are motivated and illustrated by a real data example.展开更多
文摘Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sense of their L1-norm is attaining the minimum value. Such polynomials satisfy a complicated system of nonlinear e-quations (algebraic if the space dimension is odd, only) and also a singular differential equation of third order. The exact order of decay of the minimum value with respect to the polynomial degree is determined. By our results we can prove that some nodal systems on the sphere, which are defined by a minimum-property, are providing fundamental matrices which are diagonal-dominant or bounded with respect to the ∞-norm, at least, as the polynomial degree tends to infinity.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61673295the Natural Science Foundation of Tianjin under Grant 18JCYBJC85200by the National College Students’ innovation and entrepreneurship project under Grant 201710060041.
文摘In this paper, polynomial fuzzy neural network classifiers (PFNNCs) is proposed by means of density fuzzy c-means and L2-norm regularization. The overall design of PFNNCs was realized by means of fuzzy rules that come in form of three parts, namely premise part, consequence part and aggregation part. The premise part was developed by density fuzzy c-means that helps determine the apex parameters of membership functions, while the consequence part was realized by means of two types of polynomials including linear and quadratic. L2-norm regularization that can alleviate the overfitting problem was exploited to estimate the parameters of polynomials, which constructed the aggregation part. Experimental results of several data sets demonstrate that the proposed classifiers show higher classification accuracy in comparison with some other classifiers reported in the literature.
文摘A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.
基金supported in part by the National Natural Science Foundation of China(61702475,61772493,61902370,62002337)in part by the Natural Science Foundation of Chongqing,China(cstc2019jcyj-msxmX0578,cstc2019jcyjjqX0013)+1 种基金in part by the Chinese Academy of Sciences“Light of West China”Program,in part by the Pioneer Hundred Talents Program of Chinese Academy of Sciencesby Technology Innovation and Application Development Project of Chongqing,China(cstc2019jscx-fxydX0027)。
文摘High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices.
基金Supported by National Natural Science Foundation of China (Grant Nos. 11171299 and 91130009)Natural Science Foundation of Zhejiang Province of China (Grant No. Y6090091)
文摘We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every block s-sparse signal can be recovered through the proposed mixed l2/ll-minimization approach in the noiseless case and is stably recovered in the presence of noise and mismodeling error. This improves the result of Eldar and Mishali (in IEEE Trans. Inform. Theory 55: 5302-5316, 2009). We also give another sufficient condition on block RIP for such recovery method: 58 〈 0.307.
基金The authors would like to thank reviewers for valuable comments.This work was supported by Natural Science Foundation of China(Grant Nos.61673015,61273020)Fundamental Research Funds for the Central Universities(Grant Nos.XDJK2015A007,XDJK 2018C076,SWU1809002).
文摘In this paper,we investigate truncated l2\l1-2 minimization and its associated alternating direction method of multipliers(ADMM)algorithm for recovering the block sparse signals.Based on the block restricted isometry property(Block-RIP),a theoretical analysis is presen ted to guarantee the validity of proposed method.Our theore tical resul ts not only show a less error upper bound,but also promote the former recovery condition of truncated l1-2 method for sparse signal recovery.Besides,the algorithm has been compared with some state-of-the-art algorithms and numerical experiments have shown excellent performances on recovering the block sparse signals.
基金Supported by Shanghai postdoctoral found(2000478)
文摘Increasing the robustness to the unknown uncertainty and simultaneously enhancing the sensibility to the faults is one of the important issues considered in the fault detection development. Considering the L2-gain of residual system, this paper deals the observer-based fault detection problem. By using of H∞ control theory,an LMI approach to design fault detection observer is given. A numerical example is used to illustrate the effectiveness of the proposed approach.
基金Research supported by the National Natural Science Foundation of China under Grant 61672005
文摘Based on the range space property (RSP), the equivalent conditions between nonnegative solutions to the partial sparse and the corresponding weighted l1-norm minimization problem are studied in this paper. Different from other conditions based on the spark property, the mutual coherence, the null space property (NSP) and the restricted isometry property (RIP), the RSP- based conditions are easier to be verified. Moreover, the proposed conditions guarantee not only the strong equivalence, but also the equivalence between the two problems. First, according to the foundation of the strict complemenrarity theorem of linear programming, a sufficient and necessary condition, satisfying the RSP of the sensing matrix and the full column rank property of the corresponding sub-matrix, is presented for the unique nonnegative solution to the weighted l1-norm minimization problem. Then, based on this condition, the equivalence conditions between the two problems are proposed. Finally, this paper shows that the matrix with the RSP of order k can guarantee the strong equivalence of the two problems.
基金Supported by the National Natural Science Foundation of China(11101124 and 11271231)Natural Science Foundation of Shandong Province(ZR2016AM08)National Tackling Key Problems Program(2011ZX05052,2011ZX05011-004)
文摘The physical model is described by a seepage coupled system for simulating numerically three-dimensional chemical oil recovery, whose mathematical description includes three equations to interpret main concepts. The pressure equation is a nonlinear parabolic equation, the concentration is defined by a convection-diffusion equation and the saturations of different components are stated by nonlinear convection-diffusion equations. The transport pressure appears in the concentration equation and saturation equations in the form of Darcy velocity, and controls their processes. The flow equation is solved by the conservative mixed volume element and the accuracy is improved one order for approximating Darcy velocity. The method of characteristic mixed volume element is applied to solve the concentration, where the diffusion is discretized by a mixed volume element method and the convection is treated by the method of characteristics. The characteristics can confirm strong computational stability at sharp fronts and it can avoid numerical dispersion and nonphysical oscillation. The scheme can adopt a large step while its numerical results have small time-truncation error and high order of accuracy. The mixed volume element method has the law of conservation on every element for the diffusion and it can obtain numerical solutions of the concentration and adjoint vectors. It is most important in numerical simulation to ensure the physical conservative nature. The saturation different components are obtained by the method of characteristic fractional step difference. The computational work is shortened greatly by decomposing a three-dimensional problem into three successive one-dimensional problems and it is completed easily by using the algorithm of speedup. Using the theory and technique of a priori estimates of differential equations, we derive an optimal second order estimates in 12 norm. Numerical examples are given to show the effectiveness and practicability and the method is testified as a powerful tool to solve the important problems.
文摘Abstract This paper studies the problem of minimizing a homogeneous polynomial (form) f(x) over the unit sphere Sn-1 = {x ∈ R^n: ||X||2 = 1}. The problem is NP-hard when f(x) has degree 3 or higher. Denote by fmin (resp. fmax) the minimum (resp. maximum) value of f(x) on S^n-1. First, when f(x) is an even form of degree 2d, we study the standard sum of squares (SOS) relaxation for finding a lower bound of the minimum .fmin :max γ s.t.f(x)-γ.||x||2^2d is SOS.Let fos be be the above optimal value. Then we show that for all n ≥ 2d,Here, the constant C(d) is independent of n. Second, when f(x) is a multi-form and ^-1 becomes a muilti-unit sphere, we generalize the above SOS relaxation and prove a similar bound. Third, when f(x) is sparse, we prove an improved bound depending on its sparsity pattern; when f(x) is odd, we formulate the problem equivalently as minimizing a certain even form, and prove a similar bound. Last, for minimizing f(x) over a hypersurface H(g) = {x E lRn: g(x) = 1} defined by a positive definite form g(x), we generalize the above SOS relaxation and prove a similar bound.
文摘In this paper,we consider the recovery of block sparse signals,whose nonzero entries appear in blocks (or clusters)rather than spread arbitrarily throughout the signal,from incomplete linear measurements.A high order sufficient condition based on block RIP is obtained to guarantee the stable recovery of all block sparse signals in the presence of noise,and robust recovery when signals are not exactly block sparse via mixed l2/l1 minimization.Moreover,a concrete example is established to ensure the condition is sharp.The significance of the results presented in this paper lies in the fact that recovery may be possible under more general conditions by exploiting the block structure of the sparsity pattern instead of the conventional sparsity pattern.
基金supported by the Specialized Research Fund for the Doc-toral Program of Higher Education (Grant No. 200807010004)the National Natural Science Foundation of China (Grant Nos. 60776795, 60902079, 60902031), the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) (Grant No. IRT0645)
文摘The orthogonal signals of multi-carrier-frequency emission and multiple antennas receipt module are used in SIAR radar.The corresponding received echo is equivalent to non-uniform spatial sampling after the frequency diversity process.As using the traditional Fourier transform will result in the target spectral with large sidelobe,the method presented in this paper firstly makes the preordering treatment for the position of the received antenna.Then,the Bayesian maximum posteriori estimation with l2-norm weighted constraint is utilized to achieve the equivalent uniform array echo.The simulations present the spectrum estimation in angle precision estimation of multiple targets under different SNRs,different virtual antenna numbers and different elevations.The estimation results confirm the advantage of SIAR radar both in array expansion and angle estimation.
基金supported by the National University of Singapore Academic Research Grant (Grant No. R-155-000-085-112)
文摘For several decades, much attention has been paid to the two-sample Behrens-Fisher (BF) problem which tests the equality of the means or mean vectors of two normal populations with unequal variance/covariance structures. Little work, however, has been done for the k-sample BF problem for high dimensional data which tests the equality of the mean vectors of several high-dimensional normal populations with unequal covariance structures. In this paper we study this challenging problem via extending the famous Scheffe’s transformation method, which reduces the k-sample BF problem to a one-sample problem. The induced one-sample problem can be easily tested by the classical Hotelling’s T 2 test when the size of the resulting sample is very large relative to its dimensionality. For high dimensional data, however, the dimensionality of the resulting sample is often very large, and even much larger than its sample size, which makes the classical Hotelling’s T 2 test not powerful or not even well defined. To overcome this difficulty, we propose and study an L 2-norm based test. The asymptotic powers of the proposed L 2-norm based test and Hotelling’s T 2 test are derived and theoretically compared. Methods for implementing the L 2-norm based test are described. Simulation studies are conducted to compare the L 2-norm based test and Hotelling’s T 2 test when the latter can be well defined, and to compare the proposed implementation methods for the L 2-norm based test otherwise. The methodologies are motivated and illustrated by a real data example.