Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into tw...Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into two groups according to their REE patterns and trace element features. Rocks of the first group are depleted in LREE while rocks of the second group are slightly depleted in LREE or flat from LREE to HREE without significant Eu anomaly. The first group of rocks have (La/Yb)N=0.33-0.55, (La/Sm)N= 0.45-0.65, and their La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are averaged at 1.20, 0.12, 31.02, 2.92 and 198, respectively, close to those of typical N-MORB. The second group of rocks have (La/Yb)N=0.63-0.95, (La/ Sm)N = 0.69--0.90, and their average La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are 0.82, 0.83, 1.15, 0.16, 19.00, 2.58 and 225, respectively, which lie between those of typical N-MORB and E-MORB but closer to the former. The two groups of rocks both exhibit flat patterns from Th to Yb in the highly incompatible elements spider diagram, but the first group of rocks have lower element abundances than the modern N-MORB, indicating a derivation of their mantle source from more depleted mantle source than the present N-MORB. The abundances of Th, Ta, Nb, La and Ce in the second group of rocks are slightly higher than those of the present N-MORB, and other elements, such as Hf, Zr, Sm, Ti, Y and Yb, are close to those of the N-MORB, indicating that the original magma was derived from depleted mantle but mixed with the enriched mantle. These characteristics, combined with the regional geology and previous studies, provide further evidence that the mafic-ultramafic rocks have the features of a typical ophiolite.Zircon grains from the amphibolite are generally rounded, and in most of them a distinguishable core-mantle texture is preserved as shown in the cathodoluminescence (CL) images. The core or core-mantle parts of the zircon grains are also rounded, same as those in basalts from other regions of the world. The LA-ICP-MS trace element and U-Pb isotopic analyses show that the zircon grains from the amphibolites are similar to the typical magmatic zircon in terms of their very low U and Th contents (62.36-0.10 μg/g and 78.47-0.003 μg/g, respectively). Seven pits from the core and core-mantle parts of the zircon grains yielded an average weighted 206Pb/ 238U age of 973±35 (2σ) Ma with the Th/U ratios range from 0.01 to 8.38 and mostly greater than 0.23. This age is consistent within the error range with the whole-rock Sm-Nd isochron age of 1030±46 Ma for the same kind of rocks reported by Dong et al. (1997a). In a combined analysis with the zircon positions on the CL images and the corresponding Th/U ratios, the age of 973±35 Ma is probably the formation age of tholeiite, the protolith of the Songshugou amphibolite. The geochronological determination gives further evidence that the Songshugou ophiolite was formed during the Neoproterozoic. In addition, there is one pit from the rim of a zircon grain giving a 206Pb/ 238U age of 5721199 (1σ) Ma with a Th/U ratio of 0.08. It may represent the age of the accretionary zircon in the amphibolite-facies metamorphism.展开更多
The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipula...The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipulated in detail in this paper by using the laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U-Pb dating method. The ages of biotite monzogranite that were formed before mineralization in the southwest of this mining district are 70±1 Ma (mean square of weighted deviates (MSWD) =9.5, n=8) and 60.60±0.31 Ma (MSWD=3.8, n=16), which belong to the late Cretaceous-early Paleocene in age. That means, they are products of an early tectonicmagmatic event of the collision between the Indian and Asian continentals. The ages of ore-bearing monzogranite porphyry and ore-bearing diorite porphyrite are 16.23±0.19 Ma (MSWD=2.0, n=26) and 15.16±0.09 Ma (MSWD=3.9, n=5) separately, which belong to the middle Miocene in age; namely, they are products of the Gangdese post-collision extensional stage when crust-mantle materials melted and mixed as well as magmatic intrusion simultaneously occurred. Some zircons with ages of 203.6±2.2 Ma (MSWD=1.18, n=7) were captured in the ore-bearing diorite porphyrite, which shows that there had been tectono-magmatic events in the late Triassic-early Jurassic. Molybdenum (copper) ore-bodies produced in the monzogranite porphyry and copper (molybdenum) ore-bodies produced in the diorite porphyrite are the main ore types in this ore deposit. The model ages of Re-Os isotopic dating for the 11 molybdenite are 13.97-15.84 Ma, while isochron ages are 14.09±0.49 Ma (MSWD=26). The isochron ages of seven molybdenite from molybdenum (copper) ore with monzogranite porphyry type are 14.11±0.31 Ma (MSWD=5.2). There is great error in the isochron ages of four molybdenite from copper (molybdenum) ore with diorite porphyrite type, and their weighted average model ages of 14.6±1.2 Ma (MSWD=41), which generally represent the mineralization age. The results about the Re-Os isotopic dating of molybdenite in the ore of different types have limited exactly that, the minerlazation age of this ore deposits is about 14.09 Ma, which belongs to the middle Miocene mineralization. The Bangpu deposit has a uniform metallogenic dynamics background with the porphyry type and skarn-type deposits such as Jiama, Qulong and others.展开更多
The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite...The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite.The wall rocks are composed of Variscan porphyritic-like biotite granite and the Lower Ordovician Wubin'aobao Formation.LA-ICP-MS zircon U-Pb dating of the fine-grained granite reveals two stages of zircons,one were formed at 181.7±7.4 Ma and the other at 133.6±3.3 Ma.The latter age is believed to be the formation age of the fine-grained granite,while the former may reflect the age of inherited zircons,based on the morphological study of the zircon and regional geological setting.The Re-Os model age of molybdenite is 142.2±2.5 Ma,which is older than the diagenetic age of the fine-grained granite.Therefore the authors believe that the metallogenic age of the Wurinitu molybdenum deposit should be nearly 133.6±3.3 Ma or slightly later,i.e.,Early Cretaceous.Combined with regional geological background research,it is speculated that the molybdenum deposits were formed at the late Yanshanian orogenic cycle in the Hingganling-Mongolian orogenic belt,belonging to the relaxation epoch posterior to the compression and was associated with the closure of the Mongolia-Okhotsk Sea.展开更多
Objective Indosinian magmatic rocks mainly locate in west Qinling Orogen, which are, however, extremely rare in east Qingling Orogen (Lu Xinxiang, 2000; Zhang Guowei et al., 2001; Guo Xianqing et al., 2017). The Zh...Objective Indosinian magmatic rocks mainly locate in west Qinling Orogen, which are, however, extremely rare in east Qingling Orogen (Lu Xinxiang, 2000; Zhang Guowei et al., 2001; Guo Xianqing et al., 2017). The Zhifang Huangzhuang (ZH) area in south Songxian County is located in the southern margin of the North China Craton (Fig. l a), which is an important lndosinian alkaline magmatic occurrence including 32 syenite bodies and syenitic dykes in east Qinling Orogen. There are five syenite bodes in the ZH area, i.e., the Lang'aogou, Mogou, Longtou, Jiaogou and Wusanggou from west to east (Fig. l b).展开更多
1 Introduction Hetai district,which is a mountainous area,situated on Guangning and Zhaoqing city,west Guangdong Province.Hetai district is generally located on southwest of South China Caledonian fold belt,east margi...1 Introduction Hetai district,which is a mountainous area,situated on Guangning and Zhaoqing city,west Guangdong Province.Hetai district is generally located on southwest of South China Caledonian fold belt,east margin of Yunkai post-Caledonian uplift.Multiple type granites are widely distributed in Hetai district,including Caledonian,Indosinian and Yanshanian granites.Based on different展开更多
The eastern margin of the Qaidam Basin lies in the key tectonic location connecting the Qinling, Qilian and East Kunlun orogens. The paper presents an investigation and analysis of the geologic structures of the area ...The eastern margin of the Qaidam Basin lies in the key tectonic location connecting the Qinling, Qilian and East Kunlun orogens. The paper presents an investigation and analysis of the geologic structures of the area and LA-ICP MS zircon U-Pb dating of Paleozoic and Mesozoic magmatisms of granitoids in the basement of the eastern Qaidam Basin on the basis of 16 granitoid samples collected from the South Qilian Mountains, the Qaidam Basin basement and the East Kunlun Mountains. According to the results in this paper, the basement of the basin, from the northern margin of the Qaidam Basin to the East Kunlun Mountains, has experienced at least three periods of intrusive activities of granitoids since the Early Paleozoic, i.e. the magmatisms occurring in the Late Cambrian (493.1±4.9 Ma), the Silurian (422.9±8.0 Ma-420.4±4.6 Ma) and the Late Permian-Middle Triassic (257.8±4.0 Ma-228.8+1.5 Ma), respectively. Among them, the Late Permian - Middle Triassic granitoids form the main components of the basement of the basin. The statistics of dated zircons in this paper shows the intrusive magmatic activities in the basement of the basin have three peak ages of 244 Ma (main), 418 Ma, and 493 Ma respectively. The dating results reveal that the Early Paleozoic magmatism of granitoids mainly occurred on the northern margin of the Qaidam Basin and the southern margin of the Qilian Mountains, with only weak indications in the East Kunlun Mountains. However, the distribution of Permo-Triassic (P-T) granitoids occupied across the whole basement of the eastern Qaidam Basin from the southern margin of the Qilian Mountains to the East Kunlun Mountains. An integrated analysis of the age distribution of P-T granitoids in the Qaidam Basin and its surrounding mountains shows that the earliest P-T magmatism (293.6-270 Ma) occurred in the northwestern part of the basin and expanded eastwards and southwards, resulting in the P-T intrusive magmatism that ran through the whole basin basement. As the Cenozoic basement thrust system developed in the eastern Qaidam Basin, the nearly N-S-trending shortening and deformation in the basement of the basin tended to intensify from west to east, which went contrary to the distribution trend of N-S-trending shortening and deformation in the Cenozoic cover of the basin, reflecting that there was a transformation of shortening and thickening of Cenozoic crust between the eastern and western parts of the Qaidam Basin, i.e., the crustal shortening of eastern Qaidam was dominated by the basement deformation (triggered at the middle and lower crust), whereas that of western Qaidam was mainly by folding and thrusting of the sedimentary cover (the upper crust).展开更多
The Niutougou gold deposit, located in the center of the Xiong'ershan gold district, western Henan Province, is a large gold deposit with many quartz porphyries found in the area. Based on the field geological invest...The Niutougou gold deposit, located in the center of the Xiong'ershan gold district, western Henan Province, is a large gold deposit with many quartz porphyries found in the area. Based on the field geological investigation of quartz porphyry of Niutougou gold deposit and by using the cathodoluminescence (CL) images analysis and in situ LA-ICP-MS U-Pb isotope dating method of zircons, the inner structure, trace element compositions and U-Pb age of the zircons separated from quartz porphyry were analyzed and determined. Cathodoluminescence (CL) images of zircons show clear magmatic zonations. Trace element analyses of zircons reveal that all zircons show high concentrations of Th, U, and HREE, and the REE patterns of depletion in LREE, with a positive Ce anomaly. Zircon LA-ICP-MS U-Pb dating results show that the quartz porphyry in the Niutougou gold deposit was formed at 159.714-0.99 Ma (about 160 Ma), belonging to the product of magmatic activity in late Middle Jurassic. Combined with the geological characteristics of the Niutougou gold deposit, the formation age of the quartz porphyry and the analysis of the formation age of the granite body exposed in the Niutougou gold deposit, the study suggests that the metallogenic epoch of the Niutougou gold deposit may be Yanshanian in age.展开更多
LA-ICP-MS zircon U-Pb dating has revealed that the Huangyangshan pluton in Eastern Junggar was formed at 311±12 Ma,and that microgranular enclaves were formed at 300±6 Ma;both ages are very consistent within...LA-ICP-MS zircon U-Pb dating has revealed that the Huangyangshan pluton in Eastern Junggar was formed at 311±12 Ma,and that microgranular enclaves were formed at 300±6 Ma;both ages are very consistent within errors.It is the first time that the microgranular enclaves age in Kalamaili area was determined.Petrochemistry and geochemistry research shows the characteristics of host rock as follows:展开更多
The Kunlunguan biotite granite pluton, located in the southwestern part of the Nanling Mesozoic granite belt, is controlled by the NW-trending Nandan-Kunlunguan deep fault. LA-ICP-MS zircon U-Pb dating yielded a weigh...The Kunlunguan biotite granite pluton, located in the southwestern part of the Nanling Mesozoic granite belt, is controlled by the NW-trending Nandan-Kunlunguan deep fault. LA-ICP-MS zircon U-Pb dating yielded a weighted mean 206Pb/238U age of 93.0±1 Ma (MSDW=1.7) for the main part of the pluton, implying its Late Creta-ceous intrusion. The Kunlunguan body is a high-K calc-alkaline rock characterized by high silicon, alkali and alu-minum, and low phosphorus and titanium. SiO2 contents of the Kunlunguan body range from 68.13% to 72.61% and K2O/Na2O ratios from 1.28 to 1.87. A/CNK values vary from 0.76 to 1.42, indicating a metaluminous to intensively peraluminous character. The rocks are enriched in Ga, Rb, Th, U and Pb but depleted in Ba, Nb, Sr, P and Ti. The REEs are characterized by remarkable negative Eu anomalies (Eu/Eu*=0.53-0.73) and exhibit right-inclined "V"-shaped patterns with LREE enrichment. Petrology, major and trace elements data all indicate that the pluton is aluminous A-type granite which intruded in a post-collisional extensional tectonic setting. It is related to back-arc extension, reflecting high-angle subduction of the paleo-Pacific plate, caused by northward movement of the Indian plate. The Nandan-Kunlunguan A-type granites belt, together with similar plutons in the coastal areas of Zhejiang and Fujian provinces, represent the two A-type granite belts under a matching tectonic system.展开更多
Erdaohezi lead-zinc deposit belongs to the Derbugan metallogenic belt lying on the northwestern Hailaer-Genhe Mesozoic volcanic basin, located on the western slope of the Da Hinggan Mountains. The deposit is considere...Erdaohezi lead-zinc deposit belongs to the Derbugan metallogenic belt lying on the northwestern Hailaer-Genhe Mesozoic volcanic basin, located on the western slope of the Da Hinggan Mountains. The deposit is considered as one of the hypabyssal low-temprature hydrothermal lead-zinc deposits associated with volca- nism. In order to lay the foundation on studying its diagenesis and mineralization ages, the detailed studies were carried out by dating the host rocks (i. e. rhyolitic lithic-crystal tufts) using zircon LA-ICP-MS U-Pb method. The dating results show three groups ot! ages. The first group is the captured zircons (the weighted mean ^206pb/238U age as 175.6± 2.3 Ma, MSWD = 0.70, n = 3). The second group can be regarded as the rock- forming age (the weighted mean ^206pb/238U age as 165.3± 1.9 Ma, MSWD = 2.40, n = 14). The third group should represent the late stage of the magmatic evolution (the weighted mean ^206pb/238U age as 161.0 ± 3.1 Ma, MSWD = 0.86, n = 4). According to the ages and the crystal form or CL image characteristics of zircons, it is determined that the diagenesis occurred in the late Middle Jurassic. Based on the regional geology and geo- chronological research, the acidic pyroclastic rocks are space accompaniment and time connection with the Tamu- langou Formation intermediate-mafic volcanic rocks. Both of them constitute the host rocks of the deposit together. The rock combination also provides favorable conditions for large-scale silver, lead and zinc mineralization in this area.展开更多
A large area of Late Paleozoic intrusions occursalong the Kalamaili fault in North Xinjiang,which is divided into I-type and A-type granite(Liu et al.,2013),and are the ideal objects for revealing the geological evolu...A large area of Late Paleozoic intrusions occursalong the Kalamaili fault in North Xinjiang,which is divided into I-type and A-type granite(Liu et al.,2013),and are the ideal objects for revealing the geological evolution of this region.However,the study of the granodioritic pluton in East Junggar is particularly weak.展开更多
High-K granites dominate the rock units in the Bakoshi and Gadanya areas located in the northwestern Nigerian subshield,part of the Trans-Saharan Belt,West Africa.In this contribution,the LA-ICP-MS zircon trace elemen...High-K granites dominate the rock units in the Bakoshi and Gadanya areas located in the northwestern Nigerian subshield,part of the Trans-Saharan Belt,West Africa.In this contribution,the LA-ICP-MS zircon trace element revealed the fertility of magma responsible for the high-K granites that hosts the Bakoshi–Gadanya gold mineralization.Two likely metallogenic granites types are 1)Gadanya alkali granite,with high Ce^(4+)/Ce^(3+)(mean 1485)and limited range of Eu anomalies may likely be associated with the gold mineralization,and 2)Bakoshi porphyritic granite,Jaulere biotite granite,Shanono coarsegrained granite,and Yettiti granite,all have low Ce^(4+)/Ce^(3+) ratios(mean\100,except second Bakoshi granite D2-1)with wider ranges of Eu/Eu^(*) values,thus are considered reduced granites.These reduced granites have oxygen fugacity values and Eu anomalies comparable to reduced granites associated with tin belts in Myanmar and Zaaiplaats granites in Bushveld Complex,South Africa.Ti-inZircon thermometric study revealed two thermal regimes during the crystallization of the Bakoshi–Gadanya granites:the high temperature(746–724℃):Shanono coarsegrained granite,Bakoshi granite D2-1,and Jaulere biotite granite;and relatively low temperature(705–653℃):Bakoshi porphyritic granite D1-1,Yettiti medium-grained granite,and Gadanya alkali granite.Zircon trace elements including U,Yb,Y,Nb,and Sc ratios constraint the magma source of Bakoshi–Gadanya granites to an enriched mantle metasomatized during the subduction process before its melting.Except for Gadanya alkali granite,fractionation of titanite and apatite dominate the magma evolution with limited amphibole fractionation.Melt that crystallized Gadanya alkali granite is rather saturated in zircon without accessory titanite or apatite.展开更多
热电离质谱法(Thermal ionization mass spectrometry,简称TIMS)是一种测量同位素丰度比的经典分析方法,在地质学和核工业领域得到广泛应用。热电离质谱法测铀同位素丰度比时一般采用三带结构,由于铀的第一电离能较高,需要较高的电离温...热电离质谱法(Thermal ionization mass spectrometry,简称TIMS)是一种测量同位素丰度比的经典分析方法,在地质学和核工业领域得到广泛应用。热电离质谱法测铀同位素丰度比时一般采用三带结构,由于铀的第一电离能较高,需要较高的电离温度,长时间测试蒸发出铀化合物或电离出的铀离子在灯丝支架上沉积,影响灯丝支架上悬浮高压与源电压间的绝缘电阻,降低两者之间的电压差,导致绝大部分离子因动能不足无法进入离子透镜,最终影响离子流的稳定性,引起测试时信号产生波动。针对热电离质谱仪灯丝支架铀沉积导致的灯丝支架绝缘失效问题,采用激光剥蚀电感耦合等离子体质谱法(Laser ablation inductively coupled plasma mass spectrometry,简称LA-ICP-MS)对灯丝支架铀沉积分布进行了分析,取得以下结果:建立了LA-ICP-MS原位表面分析技术,其最佳激光频率为10 Hz,能量密度为6 J·cm-2,束斑直径为60μm。校准曲线相关系数R2=0.9992,表明建立的方法线性关系良好。应用建立的方法,测定了灯丝支架表面铀沉积的分布特征。结果显示:灯丝支架表面铀沉积随着灯丝支架使用时间的增加,对应的绝缘电阻变小;并沿着支架向两端延伸,铀沉积量逐渐降低。铀沉积主要集中在电离带灯丝支架中心上端,且蒸发带上铀沉积量明显低于电离带。同时绝缘挡片可以有效降低陶瓷绝缘体上铀的沉积,因此可以通过增大绝缘挡片来提高灯丝支架的绝缘效果。展开更多
基金the National NaturalScience Foundation of China(Grant No:140032010-C,49972063)the National Key Basic Researchand Development Project of China(Grant No:G1999075508)+1 种基金the Ministry of Education's Teachers Fund(No:40133020) the Opening Fund of Key Laboratory of Lithosphere Tectonics.
文摘Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into two groups according to their REE patterns and trace element features. Rocks of the first group are depleted in LREE while rocks of the second group are slightly depleted in LREE or flat from LREE to HREE without significant Eu anomaly. The first group of rocks have (La/Yb)N=0.33-0.55, (La/Sm)N= 0.45-0.65, and their La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are averaged at 1.20, 0.12, 31.02, 2.92 and 198, respectively, close to those of typical N-MORB. The second group of rocks have (La/Yb)N=0.63-0.95, (La/ Sm)N = 0.69--0.90, and their average La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are 0.82, 0.83, 1.15, 0.16, 19.00, 2.58 and 225, respectively, which lie between those of typical N-MORB and E-MORB but closer to the former. The two groups of rocks both exhibit flat patterns from Th to Yb in the highly incompatible elements spider diagram, but the first group of rocks have lower element abundances than the modern N-MORB, indicating a derivation of their mantle source from more depleted mantle source than the present N-MORB. The abundances of Th, Ta, Nb, La and Ce in the second group of rocks are slightly higher than those of the present N-MORB, and other elements, such as Hf, Zr, Sm, Ti, Y and Yb, are close to those of the N-MORB, indicating that the original magma was derived from depleted mantle but mixed with the enriched mantle. These characteristics, combined with the regional geology and previous studies, provide further evidence that the mafic-ultramafic rocks have the features of a typical ophiolite.Zircon grains from the amphibolite are generally rounded, and in most of them a distinguishable core-mantle texture is preserved as shown in the cathodoluminescence (CL) images. The core or core-mantle parts of the zircon grains are also rounded, same as those in basalts from other regions of the world. The LA-ICP-MS trace element and U-Pb isotopic analyses show that the zircon grains from the amphibolites are similar to the typical magmatic zircon in terms of their very low U and Th contents (62.36-0.10 μg/g and 78.47-0.003 μg/g, respectively). Seven pits from the core and core-mantle parts of the zircon grains yielded an average weighted 206Pb/ 238U age of 973±35 (2σ) Ma with the Th/U ratios range from 0.01 to 8.38 and mostly greater than 0.23. This age is consistent within the error range with the whole-rock Sm-Nd isochron age of 1030±46 Ma for the same kind of rocks reported by Dong et al. (1997a). In a combined analysis with the zircon positions on the CL images and the corresponding Th/U ratios, the age of 973±35 Ma is probably the formation age of tholeiite, the protolith of the Songshugou amphibolite. The geochronological determination gives further evidence that the Songshugou ophiolite was formed during the Neoproterozoic. In addition, there is one pit from the rim of a zircon grain giving a 206Pb/ 238U age of 5721199 (1σ) Ma with a Th/U ratio of 0.08. It may represent the age of the accretionary zircon in the amphibolite-facies metamorphism.
基金supported by the "973"Project for Basic Research of China (No. 2011CB403103)Ministry of Land and Resources’ Special Funds for Scientific Research on Public Causes (No. 200911007-02)China Geological Survey’ Special Funds for Scientific Research on Qinghai-Tibet Plateau (No. 1212010012005)
文摘The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipulated in detail in this paper by using the laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U-Pb dating method. The ages of biotite monzogranite that were formed before mineralization in the southwest of this mining district are 70±1 Ma (mean square of weighted deviates (MSWD) =9.5, n=8) and 60.60±0.31 Ma (MSWD=3.8, n=16), which belong to the late Cretaceous-early Paleocene in age. That means, they are products of an early tectonicmagmatic event of the collision between the Indian and Asian continentals. The ages of ore-bearing monzogranite porphyry and ore-bearing diorite porphyrite are 16.23±0.19 Ma (MSWD=2.0, n=26) and 15.16±0.09 Ma (MSWD=3.9, n=5) separately, which belong to the middle Miocene in age; namely, they are products of the Gangdese post-collision extensional stage when crust-mantle materials melted and mixed as well as magmatic intrusion simultaneously occurred. Some zircons with ages of 203.6±2.2 Ma (MSWD=1.18, n=7) were captured in the ore-bearing diorite porphyrite, which shows that there had been tectono-magmatic events in the late Triassic-early Jurassic. Molybdenum (copper) ore-bodies produced in the monzogranite porphyry and copper (molybdenum) ore-bodies produced in the diorite porphyrite are the main ore types in this ore deposit. The model ages of Re-Os isotopic dating for the 11 molybdenite are 13.97-15.84 Ma, while isochron ages are 14.09±0.49 Ma (MSWD=26). The isochron ages of seven molybdenite from molybdenum (copper) ore with monzogranite porphyry type are 14.11±0.31 Ma (MSWD=5.2). There is great error in the isochron ages of four molybdenite from copper (molybdenum) ore with diorite porphyrite type, and their weighted average model ages of 14.6±1.2 Ma (MSWD=41), which generally represent the mineralization age. The results about the Re-Os isotopic dating of molybdenite in the ore of different types have limited exactly that, the minerlazation age of this ore deposits is about 14.09 Ma, which belongs to the middle Miocene mineralization. The Bangpu deposit has a uniform metallogenic dynamics background with the porphyry type and skarn-type deposits such as Jiama, Qulong and others.
基金support by China Geological Survey (1212010911028)NSFC(40802020)+1 种基金Ministry of Land and Resources(1212010633902,1212010633903 and 121201 0711814)CUGB(GPMR 0735)
文摘The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite.The wall rocks are composed of Variscan porphyritic-like biotite granite and the Lower Ordovician Wubin'aobao Formation.LA-ICP-MS zircon U-Pb dating of the fine-grained granite reveals two stages of zircons,one were formed at 181.7±7.4 Ma and the other at 133.6±3.3 Ma.The latter age is believed to be the formation age of the fine-grained granite,while the former may reflect the age of inherited zircons,based on the morphological study of the zircon and regional geological setting.The Re-Os model age of molybdenite is 142.2±2.5 Ma,which is older than the diagenetic age of the fine-grained granite.Therefore the authors believe that the metallogenic age of the Wurinitu molybdenum deposit should be nearly 133.6±3.3 Ma or slightly later,i.e.,Early Cretaceous.Combined with regional geological background research,it is speculated that the molybdenum deposits were formed at the late Yanshanian orogenic cycle in the Hingganling-Mongolian orogenic belt,belonging to the relaxation epoch posterior to the compression and was associated with the closure of the Mongolia-Okhotsk Sea.
基金supported by the National Nature Science Foundation of China(grant No.U1504405)
文摘Objective Indosinian magmatic rocks mainly locate in west Qinling Orogen, which are, however, extremely rare in east Qingling Orogen (Lu Xinxiang, 2000; Zhang Guowei et al., 2001; Guo Xianqing et al., 2017). The Zhifang Huangzhuang (ZH) area in south Songxian County is located in the southern margin of the North China Craton (Fig. l a), which is an important lndosinian alkaline magmatic occurrence including 32 syenite bodies and syenitic dykes in east Qinling Orogen. There are five syenite bodes in the ZH area, i.e., the Lang'aogou, Mogou, Longtou, Jiaogou and Wusanggou from west to east (Fig. l b).
基金co-funded by the China Geological Survey (No.12120114052801)the DREAM project of MOST, China (NO. 2016YFC0600401)
文摘1 Introduction Hetai district,which is a mountainous area,situated on Guangning and Zhaoqing city,west Guangdong Province.Hetai district is generally located on southwest of South China Caledonian fold belt,east margin of Yunkai post-Caledonian uplift.Multiple type granites are widely distributed in Hetai district,including Caledonian,Indosinian and Yanshanian granites.Based on different
基金supports by the Basic Research Foundation of the Institute of Geomechanics,CAGS,China (DZLXJK200703)the National Natural Science Foundation of China(40342015)+1 种基金SinoProbe-Deep Exploration in China(SinoProbe-08)the National Science Foundation(USA) Instrumentation and Facilities Program (EAR-0443387)
文摘The eastern margin of the Qaidam Basin lies in the key tectonic location connecting the Qinling, Qilian and East Kunlun orogens. The paper presents an investigation and analysis of the geologic structures of the area and LA-ICP MS zircon U-Pb dating of Paleozoic and Mesozoic magmatisms of granitoids in the basement of the eastern Qaidam Basin on the basis of 16 granitoid samples collected from the South Qilian Mountains, the Qaidam Basin basement and the East Kunlun Mountains. According to the results in this paper, the basement of the basin, from the northern margin of the Qaidam Basin to the East Kunlun Mountains, has experienced at least three periods of intrusive activities of granitoids since the Early Paleozoic, i.e. the magmatisms occurring in the Late Cambrian (493.1±4.9 Ma), the Silurian (422.9±8.0 Ma-420.4±4.6 Ma) and the Late Permian-Middle Triassic (257.8±4.0 Ma-228.8+1.5 Ma), respectively. Among them, the Late Permian - Middle Triassic granitoids form the main components of the basement of the basin. The statistics of dated zircons in this paper shows the intrusive magmatic activities in the basement of the basin have three peak ages of 244 Ma (main), 418 Ma, and 493 Ma respectively. The dating results reveal that the Early Paleozoic magmatism of granitoids mainly occurred on the northern margin of the Qaidam Basin and the southern margin of the Qilian Mountains, with only weak indications in the East Kunlun Mountains. However, the distribution of Permo-Triassic (P-T) granitoids occupied across the whole basement of the eastern Qaidam Basin from the southern margin of the Qilian Mountains to the East Kunlun Mountains. An integrated analysis of the age distribution of P-T granitoids in the Qaidam Basin and its surrounding mountains shows that the earliest P-T magmatism (293.6-270 Ma) occurred in the northwestern part of the basin and expanded eastwards and southwards, resulting in the P-T intrusive magmatism that ran through the whole basin basement. As the Cenozoic basement thrust system developed in the eastern Qaidam Basin, the nearly N-S-trending shortening and deformation in the basement of the basin tended to intensify from west to east, which went contrary to the distribution trend of N-S-trending shortening and deformation in the Cenozoic cover of the basin, reflecting that there was a transformation of shortening and thickening of Cenozoic crust between the eastern and western parts of the Qaidam Basin, i.e., the crustal shortening of eastern Qaidam was dominated by the basement deformation (triggered at the middle and lower crust), whereas that of western Qaidam was mainly by folding and thrusting of the sedimentary cover (the upper crust).
基金funded by the Program forthe New Century Excellent Tallents in Ministry of Education (No.NCET-09-0710)the National Natural Science Foundation of China (No.40872068 and40672064)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in Ministry of Education(No.IRT0755)the "111" Project (No.B07011)
文摘The Niutougou gold deposit, located in the center of the Xiong'ershan gold district, western Henan Province, is a large gold deposit with many quartz porphyries found in the area. Based on the field geological investigation of quartz porphyry of Niutougou gold deposit and by using the cathodoluminescence (CL) images analysis and in situ LA-ICP-MS U-Pb isotope dating method of zircons, the inner structure, trace element compositions and U-Pb age of the zircons separated from quartz porphyry were analyzed and determined. Cathodoluminescence (CL) images of zircons show clear magmatic zonations. Trace element analyses of zircons reveal that all zircons show high concentrations of Th, U, and HREE, and the REE patterns of depletion in LREE, with a positive Ce anomaly. Zircon LA-ICP-MS U-Pb dating results show that the quartz porphyry in the Niutougou gold deposit was formed at 159.714-0.99 Ma (about 160 Ma), belonging to the product of magmatic activity in late Middle Jurassic. Combined with the geological characteristics of the Niutougou gold deposit, the formation age of the quartz porphyry and the analysis of the formation age of the granite body exposed in the Niutougou gold deposit, the study suggests that the metallogenic epoch of the Niutougou gold deposit may be Yanshanian in age.
文摘LA-ICP-MS zircon U-Pb dating has revealed that the Huangyangshan pluton in Eastern Junggar was formed at 311±12 Ma,and that microgranular enclaves were formed at 300±6 Ma;both ages are very consistent within errors.It is the first time that the microgranular enclaves age in Kalamaili area was determined.Petrochemistry and geochemistry research shows the characteristics of host rock as follows:
基金supported by the Program for Changjiang Schoolars and Innovative Research Team in University (IRT0755)the Key Laboratory of Geological Progress and Mineral Resources (GPMR),China University of Geosciences
文摘The Kunlunguan biotite granite pluton, located in the southwestern part of the Nanling Mesozoic granite belt, is controlled by the NW-trending Nandan-Kunlunguan deep fault. LA-ICP-MS zircon U-Pb dating yielded a weighted mean 206Pb/238U age of 93.0±1 Ma (MSDW=1.7) for the main part of the pluton, implying its Late Creta-ceous intrusion. The Kunlunguan body is a high-K calc-alkaline rock characterized by high silicon, alkali and alu-minum, and low phosphorus and titanium. SiO2 contents of the Kunlunguan body range from 68.13% to 72.61% and K2O/Na2O ratios from 1.28 to 1.87. A/CNK values vary from 0.76 to 1.42, indicating a metaluminous to intensively peraluminous character. The rocks are enriched in Ga, Rb, Th, U and Pb but depleted in Ba, Nb, Sr, P and Ti. The REEs are characterized by remarkable negative Eu anomalies (Eu/Eu*=0.53-0.73) and exhibit right-inclined "V"-shaped patterns with LREE enrichment. Petrology, major and trace elements data all indicate that the pluton is aluminous A-type granite which intruded in a post-collisional extensional tectonic setting. It is related to back-arc extension, reflecting high-angle subduction of the paleo-Pacific plate, caused by northward movement of the Indian plate. The Nandan-Kunlunguan A-type granites belt, together with similar plutons in the coastal areas of Zhejiang and Fujian provinces, represent the two A-type granite belts under a matching tectonic system.
基金Supported by National Natural Science Foundation of China(No.41390444)
文摘Erdaohezi lead-zinc deposit belongs to the Derbugan metallogenic belt lying on the northwestern Hailaer-Genhe Mesozoic volcanic basin, located on the western slope of the Da Hinggan Mountains. The deposit is considered as one of the hypabyssal low-temprature hydrothermal lead-zinc deposits associated with volca- nism. In order to lay the foundation on studying its diagenesis and mineralization ages, the detailed studies were carried out by dating the host rocks (i. e. rhyolitic lithic-crystal tufts) using zircon LA-ICP-MS U-Pb method. The dating results show three groups ot! ages. The first group is the captured zircons (the weighted mean ^206pb/238U age as 175.6± 2.3 Ma, MSWD = 0.70, n = 3). The second group can be regarded as the rock- forming age (the weighted mean ^206pb/238U age as 165.3± 1.9 Ma, MSWD = 2.40, n = 14). The third group should represent the late stage of the magmatic evolution (the weighted mean ^206pb/238U age as 161.0 ± 3.1 Ma, MSWD = 0.86, n = 4). According to the ages and the crystal form or CL image characteristics of zircons, it is determined that the diagenesis occurred in the late Middle Jurassic. Based on the regional geology and geo- chronological research, the acidic pyroclastic rocks are space accompaniment and time connection with the Tamu- langou Formation intermediate-mafic volcanic rocks. Both of them constitute the host rocks of the deposit together. The rock combination also provides favorable conditions for large-scale silver, lead and zinc mineralization in this area.
基金supported financially by the NSFC projects(Grant Nos.U1403291,41830216,and 41802074)projects of the China Geological Survey(Grant Nos.DD20160024,DD20160123,and DD20160345)IGCP 662.
文摘A large area of Late Paleozoic intrusions occursalong the Kalamaili fault in North Xinjiang,which is divided into I-type and A-type granite(Liu et al.,2013),and are the ideal objects for revealing the geological evolution of this region.However,the study of the granodioritic pluton in East Junggar is particularly weak.
基金co-financed by the National Natural Science Foundation of China (Grant No.41502067)the Science and Technology Innovation Program of Hunan Province (Grant No.2021RC4055)。
文摘High-K granites dominate the rock units in the Bakoshi and Gadanya areas located in the northwestern Nigerian subshield,part of the Trans-Saharan Belt,West Africa.In this contribution,the LA-ICP-MS zircon trace element revealed the fertility of magma responsible for the high-K granites that hosts the Bakoshi–Gadanya gold mineralization.Two likely metallogenic granites types are 1)Gadanya alkali granite,with high Ce^(4+)/Ce^(3+)(mean 1485)and limited range of Eu anomalies may likely be associated with the gold mineralization,and 2)Bakoshi porphyritic granite,Jaulere biotite granite,Shanono coarsegrained granite,and Yettiti granite,all have low Ce^(4+)/Ce^(3+) ratios(mean\100,except second Bakoshi granite D2-1)with wider ranges of Eu/Eu^(*) values,thus are considered reduced granites.These reduced granites have oxygen fugacity values and Eu anomalies comparable to reduced granites associated with tin belts in Myanmar and Zaaiplaats granites in Bushveld Complex,South Africa.Ti-inZircon thermometric study revealed two thermal regimes during the crystallization of the Bakoshi–Gadanya granites:the high temperature(746–724℃):Shanono coarsegrained granite,Bakoshi granite D2-1,and Jaulere biotite granite;and relatively low temperature(705–653℃):Bakoshi porphyritic granite D1-1,Yettiti medium-grained granite,and Gadanya alkali granite.Zircon trace elements including U,Yb,Y,Nb,and Sc ratios constraint the magma source of Bakoshi–Gadanya granites to an enriched mantle metasomatized during the subduction process before its melting.Except for Gadanya alkali granite,fractionation of titanite and apatite dominate the magma evolution with limited amphibole fractionation.Melt that crystallized Gadanya alkali granite is rather saturated in zircon without accessory titanite or apatite.