The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite...The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite.The wall rocks are composed of Variscan porphyritic-like biotite granite and the Lower Ordovician Wubin'aobao Formation.LA-ICP-MS zircon U-Pb dating of the fine-grained granite reveals two stages of zircons,one were formed at 181.7±7.4 Ma and the other at 133.6±3.3 Ma.The latter age is believed to be the formation age of the fine-grained granite,while the former may reflect the age of inherited zircons,based on the morphological study of the zircon and regional geological setting.The Re-Os model age of molybdenite is 142.2±2.5 Ma,which is older than the diagenetic age of the fine-grained granite.Therefore the authors believe that the metallogenic age of the Wurinitu molybdenum deposit should be nearly 133.6±3.3 Ma or slightly later,i.e.,Early Cretaceous.Combined with regional geological background research,it is speculated that the molybdenum deposits were formed at the late Yanshanian orogenic cycle in the Hingganling-Mongolian orogenic belt,belonging to the relaxation epoch posterior to the compression and was associated with the closure of the Mongolia-Okhotsk Sea.展开更多
Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information.This study systematically investigates the geochemistry and geochronology of ...Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information.This study systematically investigates the geochemistry and geochronology of garnet and zircon in the Dafang Au-Pb-Zn-Ag deposit,which represents prominent gold mineralization in southern Hunan,China.Garnet samples with distinct zoning patterns and compositional variations were identified using various analytical techniques,including Backscattered Electron(BSE)imaging,Cathodoluminescence(CL)response,textural characterization,and analysis of rare-earth elements(REE),major contents,and trace element compositions.The garnet was dated U-Pb dating,which yielded a lower intercept age of 161.06±1.93 Ma.This age is older than the underlying granodiorite porphyry,which has a concordia age of 155.13±0.95 Ma determined by zircon U-Pb dating.These results suggest that the gold mineralization may be related to the concealed granite.Two groups of garnet changed from depleted Al garnet to enriched Al garnet,and the rare earth element(REE)patterns of these groups were converted from light REE(LREE)-enriched and heavy REE(HREE)-depleted with positive europium(Eu)anomalies to medium REE(MREE)-enriched from core to rim zoning.The different REE patterns of garnet in various zones may be attributed to changes in the fluid environment and late superposition alteration.The development of distal skarn in the southern Hunan could be a significant indicator for identifying gold mineralization.展开更多
As we know there is a famous East Qinling-Dabie molybdenum belt in china,where many molybdenum deposits located such as super giant Jinduicheng,Sandaozhuang,Shangfanggou and Nannihu molybdenum deposits(Li,2008) ;The m...As we know there is a famous East Qinling-Dabie molybdenum belt in china,where many molybdenum deposits located such as super giant Jinduicheng,Sandaozhuang,Shangfanggou and Nannihu molybdenum deposits(Li,2008) ;The molybdenum mineralization in the East Qinling-Dabie belt clusters into three groups or mineralization pulses:233-221,148-138 and 131-112 Ma(Mao et al,2008).展开更多
Objective The Liao-Ji orogenic belt is a famous Paleoproterozoic orogenic belt in the East Block of the North China Craton(NCC),which extend in NE-SW direction.The geological mass in the Paleoproterozoic Liao-Ji belt ...Objective The Liao-Ji orogenic belt is a famous Paleoproterozoic orogenic belt in the East Block of the North China Craton(NCC),which extend in NE-SW direction.The geological mass in the Paleoproterozoic Liao-Ji belt is mainly composed of the Liaoji granites and metamorphic volcanic-sedimentary rocks of the Liaohe group(and its展开更多
A large number of basic dikes, which indicate an important tectonic-magmatic event in the eastern part of the Central Qilian (祁连) orogenic belt, were found from Maxianshan (马衔山) rock group, Yongjing (永靖) ...A large number of basic dikes, which indicate an important tectonic-magmatic event in the eastern part of the Central Qilian (祁连) orogenic belt, were found from Maxianshan (马衔山) rock group, Yongjing (永靖) county, Gansu (甘肃) Province, China. According to the research on the characteristics of geology and petrology, the basic dike swarms, widely intruded in Maxianshan rock group, are divided into two phases by the authors. U-Pb isotope of zircons from the basic dikes above two phases is separately determined by LA-ICP-MS in the Key Laboratory of Continental Dynamics of Northwest University, China and the causes of formation of the zircons are studied using CL images. The formation age of the earlier phase of metagabbro dikes is (441.1±1.4) Ma (corresponding to the early stage of Early Silurian), and the age of the main metamorphic period is (414.3±1.2) Ma (corresponding to the early stage of Early Devonian). The formation age of the later phase of diabase dike swarms is (434±1.0) Ma (corresponding to the late stage of Early Silurian). The cap- tured-zircons from diabase dike swarms saved some information of material interfusion by Maxianshan rock group (^207pb/206pb apparent ages are (2 325±3)-(2 573 ±6) Ma), and some zircons from diabase dike swarms also saved impacted information by tectonic thermal event during the late period of Caledonian movement (^206pb/^238U apparent ages are (400±2)-(429±2) Ma). By combining the results of the related studies, the basic dikes within Maxianshan rock group were considered to be formed in the transfer period, from subductional orogeny towards collisional orogeny, which represents geological records of NW-SE extension during regional NE-SW towards intense compression in the Central Qilian block.展开更多
Objective The Guanzhong Basin in the transitional zone of the Qinling orogenic belt and the southern margin of the Ordos Basin has been extensively studied in recent years.Although some results have been obtained,some...Objective The Guanzhong Basin in the transitional zone of the Qinling orogenic belt and the southern margin of the Ordos Basin has been extensively studied in recent years.Although some results have been obtained,some problems such as whether the materials from the North China craton and the Qinling orogenic belt are detrital sedimentary rocks of the Guanzhong Basin still remain unresolved.展开更多
Zircon U-Pb isotope dating and whole-rock geochemical analyses were undertaken for the rhyolite,rhyolitic lithic crystal tuff and dacitic tuff from the Manketouebo Formation in the Keyihe area,in order to constrain th...Zircon U-Pb isotope dating and whole-rock geochemical analyses were undertaken for the rhyolite,rhyolitic lithic crystal tuff and dacitic tuff from the Manketouebo Formation in the Keyihe area,in order to constrain their genesis and tectonic significance.Zircon LA-ICP-MS U-Pb data indicate that the rhyolite and rhyolitic lithic crystal tuff were formed during 137±5 Ma and 143±1 Ma,respectively.These volcanic rocks have high SiO2(70.03%–76.46%)and K2O+Na2O(8.10%–9.52%)contents,but low CaO(0.03%–0.95%)and MgO(0.07%–0.67%)contents,which belong to the peraluminous and high-K calc-alkaline rocks.They are enriched in light rare earth elements(REEs),and exhibit fractionation of light over heavy REEs,withδEu values of 0.37–0.83.The volcanic rocks are enriched in LILEs(e.g.,Rb,U and K)and depleted in HFSEs(e.g.,Nb,Ti,P and Ta).The chemical composition suggests that these volcanic rocks formed by partial melting of crust material.Combined with previous regional research results,the authors consider that the volcanic rocks of the Manketouebo Formation in the Keyihe area were formed under an extensional environment related to the closure of the Mongolia–Okhotsk Ocean.展开更多
Zircon U-Pb geochronology has become a keystone tool across Earth science, arguably providing the gold standard in resolving deep geological time. The development of rapid in situ analysis of zircon (via laser ablati...Zircon U-Pb geochronology has become a keystone tool across Earth science, arguably providing the gold standard in resolving deep geological time. The development of rapid in situ analysis of zircon (via laser ablation and secondary ionization mass spectrometry) has allowed for large amounts of data to be generated in a relatively short amount of time and such large volume datasets offer the ability to address a range of geological questions that would otherwise remain intractable (e.g. detrital zircons as a sedi- ment fingerprinting method). The ease of acquisition, while bringing benefit to the Earth science com- munity, has also led to diverse interpretations of geochronological data. In this work we seek to refocus U -Pb zircon geochronology toward best practice by providing a robust statistically coherent workflow. We discuss a range of data filtering approaches and their inherent limitations (e.g. discordance and the reduced chi-squared; MSWD). We evaluate appropriate mechanisms to calculate the most geologically appropriate age from both 238U/206pb and 207pb/206pb ratios and demonstrate the cross over position when chronometric power swaps between these ratios. As our in situ analytical techniques become progressively more precise, appropriate statistical handing of U-Pb datasets will become increasingly pertinent.展开更多
Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into tw...Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into two groups according to their REE patterns and trace element features. Rocks of the first group are depleted in LREE while rocks of the second group are slightly depleted in LREE or flat from LREE to HREE without significant Eu anomaly. The first group of rocks have (La/Yb)N=0.33-0.55, (La/Sm)N= 0.45-0.65, and their La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are averaged at 1.20, 0.12, 31.02, 2.92 and 198, respectively, close to those of typical N-MORB. The second group of rocks have (La/Yb)N=0.63-0.95, (La/ Sm)N = 0.69--0.90, and their average La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are 0.82, 0.83, 1.15, 0.16, 19.00, 2.58 and 225, respectively, which lie between those of typical N-MORB and E-MORB but closer to the former. The two groups of rocks both exhibit flat patterns from Th to Yb in the highly incompatible elements spider diagram, but the first group of rocks have lower element abundances than the modern N-MORB, indicating a derivation of their mantle source from more depleted mantle source than the present N-MORB. The abundances of Th, Ta, Nb, La and Ce in the second group of rocks are slightly higher than those of the present N-MORB, and other elements, such as Hf, Zr, Sm, Ti, Y and Yb, are close to those of the N-MORB, indicating that the original magma was derived from depleted mantle but mixed with the enriched mantle. These characteristics, combined with the regional geology and previous studies, provide further evidence that the mafic-ultramafic rocks have the features of a typical ophiolite.Zircon grains from the amphibolite are generally rounded, and in most of them a distinguishable core-mantle texture is preserved as shown in the cathodoluminescence (CL) images. The core or core-mantle parts of the zircon grains are also rounded, same as those in basalts from other regions of the world. The LA-ICP-MS trace element and U-Pb isotopic analyses show that the zircon grains from the amphibolites are similar to the typical magmatic zircon in terms of their very low U and Th contents (62.36-0.10 μg/g and 78.47-0.003 μg/g, respectively). Seven pits from the core and core-mantle parts of the zircon grains yielded an average weighted 206Pb/ 238U age of 973±35 (2σ) Ma with the Th/U ratios range from 0.01 to 8.38 and mostly greater than 0.23. This age is consistent within the error range with the whole-rock Sm-Nd isochron age of 1030±46 Ma for the same kind of rocks reported by Dong et al. (1997a). In a combined analysis with the zircon positions on the CL images and the corresponding Th/U ratios, the age of 973±35 Ma is probably the formation age of tholeiite, the protolith of the Songshugou amphibolite. The geochronological determination gives further evidence that the Songshugou ophiolite was formed during the Neoproterozoic. In addition, there is one pit from the rim of a zircon grain giving a 206Pb/ 238U age of 5721199 (1σ) Ma with a Th/U ratio of 0.08. It may represent the age of the accretionary zircon in the amphibolite-facies metamorphism.展开更多
An early Paleozoic Proto-Tethys ocean in western Yunnan has long been postulated although no robust geological evidence has been identified.Here we investigated the recently-identified Mayidui and Wanhe ophiolitic m...An early Paleozoic Proto-Tethys ocean in western Yunnan has long been postulated although no robust geological evidence has been identified.Here we investigated the recently-identified Mayidui and Wanhe ophiolitic mélanges in SW Yunnan,which occurs in a N-S trending belt east of the late Paleozoic Changning-Menglian suture zone.The ophiolites consist mainly of meta-basalts(amphibole schists),meta-(cumulate)gabbros and gabbroic diorites,and meta-chert-shale,representing ancient oceanic crust and pelagic and hemipelagic sediments,respectively.Six samples of gabbros and gabbroic diorites from 3 profiles(Mayidui,Kongjiao and Yinchanghe)yielded zircon U-Pb ages between 462±6 Ma and 447±9 Ma,constraining the formation of the Mayidui and Wanhe ophiolites to Middle Ordovician.Gabbros from the Mayidui and Kongjiao profiles share similar geochemical characteristics with affinities to tholeiitic series,and are characterized by depleted to slightly enriched LREEs relative to HREEs with(La/Sm)N=0.69-1.87,(La/Yb)N=0.66-4.72.These,along with their predominantly positive wholerock eNd(t)and zircon eHf(t)values,indicate a MORB-like magma source.By contrast,the meta-mafic rocks from the Yinchanghe profile show significantly enriched LREEs((La/Sm)N=0.97-3.33,(La/Yb)N=1.19-14.93),as well as positive whole-rock eNd(t)and positive to negative zircon eHf(t)values,indicating an E-MORB-type mantle source.These geochemical features are consistent with an intra-oceanic setting for the formation of the Mayidui-Wanhe ophiolites.Our data,integrated with available geological evidence,provide robust constraints on the timing and nature of the Mayidui-Wanhe ophiolitic mélange,and suggest that the ophiolites represent remnants of the Proto-Tethys Ocean,which opened through separation of the Indochina and Simao blocks from the northern margin of Gondwana before the Early Cambrian,and evolved through to the Silurian.展开更多
The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipula...The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipulated in detail in this paper by using the laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U-Pb dating method. The ages of biotite monzogranite that were formed before mineralization in the southwest of this mining district are 70±1 Ma (mean square of weighted deviates (MSWD) =9.5, n=8) and 60.60±0.31 Ma (MSWD=3.8, n=16), which belong to the late Cretaceous-early Paleocene in age. That means, they are products of an early tectonicmagmatic event of the collision between the Indian and Asian continentals. The ages of ore-bearing monzogranite porphyry and ore-bearing diorite porphyrite are 16.23±0.19 Ma (MSWD=2.0, n=26) and 15.16±0.09 Ma (MSWD=3.9, n=5) separately, which belong to the middle Miocene in age; namely, they are products of the Gangdese post-collision extensional stage when crust-mantle materials melted and mixed as well as magmatic intrusion simultaneously occurred. Some zircons with ages of 203.6±2.2 Ma (MSWD=1.18, n=7) were captured in the ore-bearing diorite porphyrite, which shows that there had been tectono-magmatic events in the late Triassic-early Jurassic. Molybdenum (copper) ore-bodies produced in the monzogranite porphyry and copper (molybdenum) ore-bodies produced in the diorite porphyrite are the main ore types in this ore deposit. The model ages of Re-Os isotopic dating for the 11 molybdenite are 13.97-15.84 Ma, while isochron ages are 14.09±0.49 Ma (MSWD=26). The isochron ages of seven molybdenite from molybdenum (copper) ore with monzogranite porphyry type are 14.11±0.31 Ma (MSWD=5.2). There is great error in the isochron ages of four molybdenite from copper (molybdenum) ore with diorite porphyrite type, and their weighted average model ages of 14.6±1.2 Ma (MSWD=41), which generally represent the mineralization age. The results about the Re-Os isotopic dating of molybdenite in the ore of different types have limited exactly that, the minerlazation age of this ore deposits is about 14.09 Ma, which belongs to the middle Miocene mineralization. The Bangpu deposit has a uniform metallogenic dynamics background with the porphyry type and skarn-type deposits such as Jiama, Qulong and others.展开更多
The Shihu gold deposit, situated in the Taihang Mesozoic orogen of the North China Craton (NCC), is hosted by ductile-brittle faults within Archean metamorphic core complex. The deposit is characterized by gold-bear...The Shihu gold deposit, situated in the Taihang Mesozoic orogen of the North China Craton (NCC), is hosted by ductile-brittle faults within Archean metamorphic core complex. The deposit is characterized by gold-bearing quartz-polymetallic sulfides veins. The Mapeng granitoids stock and intermediate-basic dikes intruded the metamorphic basement rocks, and are spatially related to gold mineralization. Detailed laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) U-Pb zircon ages of the granitic rocks, dykes and mineralized quartz veins in the studied area reveal its magmatic and mineralized history. The mineralized quartz veins contain inherited zircons with ages of about 2.55 Ga and 1.84 Ga, probably coming from the basement. These two Precambrian events are coeval with those in other parts of the NCC. The Mapeng granitoid stock, the largest intrusion in the area, was emplaced at ca. 130 Ma, and is coeval with magmatic zircon populations from diorites and quartz diorite pophyrites in the same region. The ca. 130 Ma magmatism and gold mineralization were most likely related to an underplating event that took place in the Taihang orogen at Late Mesozoic. The timing of gold mineralization with respect to felsic magmatism in the area is similar to those observed in other major gold-producing provinces in the NCC. This episode is simultaneous with those in the eastern margin of NCC, indicative of a widespread late Yanshanian metallogenic event that was a response to the Early Cretaceous lithosphere in the eastern NCC, in which the mesothermal gold deposits were formed from similar tectono-magmatic environments.展开更多
A W-Mo mineralized region is located along the northern margin of the South Qinling tectonic belt of China. WMo mineralization occurs mainly in Cambrian–Ordovician clastic and carbonate rocks, and the ore bodies are ...A W-Mo mineralized region is located along the northern margin of the South Qinling tectonic belt of China. WMo mineralization occurs mainly in Cambrian–Ordovician clastic and carbonate rocks, and the ore bodies are structurally controlled by NW–SE-and NNE–SSW-striking faults. Evidence for magmatism in the area is widespread and is dominated by intermediate–felsic intrusives or apophyses, such as the Dongjiangkou, Yanzhiba, Lanbandeng, and Sihaiping granitic bodies. Quartz-vein-type mineralization and fault-controlled skarn-type mineralization dominate the ore systems, with additional enrichment in residual deposits. At present, there are few or insufficient studies on(1) the age of mineralization,(2) the relationship between intermediate–felsic granite and W-Mo mineralization,(3) the source of ore-forming materials, and(4) the metallogenic and tectonic setting of the mineralized area. In this paper, we present geochronology results for numerous intrusive granitic bodies in the South Qinling tectonic belt. U-Pb zircon geochronology of the Lanbandeng monzogranite and Wangjiaping biotite monzogranite yields ages of 222.7 ± 2.3 and 201.9 ± 1.8 Ma, respectively. In contrast to the Late Triassic age of the Lanbandeng monzogranite, the age of the newly discovered Wangjiaping biotite monzogranite places it at the Triassic–Jurassic boundary. Re-Os molybdenite geochronology on the Qipangou W-Mo deposit yielded a model age of 199.7 ± 3.9 Ma, indicating the deposit formed in the early Yanshanian period of the Early Jurassic. Granitoid intrusions in the mineralized area are characterized by composite granite bodies that crystallized at ca. 240–190 Ma. While there were multiple stages of intrusion, most occurred at 210–220 Ma, with waning magmatic activity at 200–190 Ma. The Re-Os age of molybdenite in the region is ca. 200–190 Ma, which may represent a newly discovered period of W-Mo metallogenesis that occurred during the final stages of magmatism. The heat associated with this magmatism drove ore formation and might have provided additional ore-forming components for metallogenesis(represented by the Wangjiaping biotite monzogranite). Ore materials in the mineralized area were derived from mixed crustal and mantle sources. Enrichment of the region occurred during intracontinental orogenesis in the late Indosinian–Yanshanian, subsequent to the main Indosinian collision. At this time, the tectonic environment was dominated by extension and strike-slip motion.展开更多
The Guandimao and Wawutang plutons are located at the center of Hunan, South China. The former is mainly composed of biotite monzonitic granites/granodiorites and two-mica monzonltic granites, but the latter only cons...The Guandimao and Wawutang plutons are located at the center of Hunan, South China. The former is mainly composed of biotite monzonitic granites/granodiorites and two-mica monzonltic granites, but the latter only consists of biotite monzonitic granites. The zircon ages of 203.0±1.6 Ma (biotite monzonitic granites) and 208.0-23.2 Ma (two-mica monzonltic granites) for the Guandimao pluton and 204±3 Ma for the Wawutang pluton obtained with the LA-ICP-MS U-Pb dating indicate that they were formed during the late Indosinian. In consideration of other geochronological data from Indosinian rocks of South China and adjacent regions, it is inferred that the two plutons were derived from crustal materials by decompressional melting in a post-collisional tectonic setting during spontaneous thinning of the thickened curst. Moreover, the inherited zircon age of 1273±57 Ma from the Wawutang pluton indicates that the source of the two plutons is related to the early Proterozoic crustal basement.展开更多
Objective The Bayanhua Nb-enriched gabbro is newly discovered in the Diyanmiao-Meilaotewula SSZ-type ophiolitic m61ange belt of the Hegenshan suture zone, Inner Mongolia. Nb-enriched arc gabbros are usually believed ...Objective The Bayanhua Nb-enriched gabbro is newly discovered in the Diyanmiao-Meilaotewula SSZ-type ophiolitic m61ange belt of the Hegenshan suture zone, Inner Mongolia. Nb-enriched arc gabbros are usually believed to result from partial melting of the mantle wedge peridotites metasomatized by slab melts derived from the subducting oceanic slab, which represent arc magmatic markers of the oceanic subduction zone. However, whether the Hegenshan ocean basin of the Paleo-Asian Ocean was in its subduction stage in the Early Permian requires further study for a final conclusion, and what is the evolution process of the oceanic subduction and lithospheric mantle of the Hegenshan suture zone remains speculative for the lack of further definitely petrological and chronological evidence and constraints. Therefore, this study carried out zircon LA-ICP-MS U-Pb geochronology and geochemistry on the Bayanhua Nb-enriched gabbro to discuss its origin, in order to provide new evidence for the tectonic evolution of the Hegenshan suture zone of the eastern Central Asian Orogenic Belt.展开更多
Objective The Late Cretaceous Xiuwacu ore-bearing porphyry is located in the Geza area of southern Yidun arc, SW China. In this area, the rock mass is mainly composed of three lithofacies: biotite granite porphyry, ...Objective The Late Cretaceous Xiuwacu ore-bearing porphyry is located in the Geza area of southern Yidun arc, SW China. In this area, the rock mass is mainly composed of three lithofacies: biotite granite porphyry, monzonitic granite and light alkali feldspar granite. As a part of the Yidun arc, the Geza arc has common structure and temporal- spatial evolution with the ~idun arc, which has experienced three stages of oceanic crust subduction, collision orogeny and intracontinent convergence stages. The molybdenite ores in the area are mainly hosted in monzonitic granite-porphyry and structural fracture zone, and the ore bodies are strictly controlled by faults. In recent years, great geological prospecting results have been achieved in Xiuwacu, and the deposit has reached a medium scale. However, there are few researches on the metallogenic porphyry. Based on the previous research, we determined the rock-forming and ore-forming age of the porphyry, and found that there were two stages of magmatism intrusion in Xiuwacu: Indosinian and Yanshanian. We also discussed the geochemical characteristics and source area of the rocks in the area.展开更多
Objective The northern Guangxi region is in the southwestern part of the Southern China continent,which is located at the junction of the southwest section of the Early Paleozoic Yangtze block and Cathaysian block.A s...Objective The northern Guangxi region is in the southwestern part of the Southern China continent,which is located at the junction of the southwest section of the Early Paleozoic Yangtze block and Cathaysian block.A series of NNE-trending ductile shear zones are developed in this region,and these ductile shear zones are mostly previously suggested boundary faults of the Early Paleozoic Yangtze block and Cathaysian block,such as the Shoucheng–Piaoli ductile shear zone in Northern Guangxi (Meng Yuanku et al., 2016; Zhang Xuefeng et al., 2015).展开更多
Information about the protolith of the Huangtuling granulite in North Dabieshan has been unavailable. The complex evolution history of the rock and its host basement must be further discussed. LA-ICP-MS U-Pb dating wa...Information about the protolith of the Huangtuling granulite in North Dabieshan has been unavailable. The complex evolution history of the rock and its host basement must be further discussed. LA-ICP-MS U-Pb dating was conducted on three textural domains in zircon from a high-temperature, high-pressure felsic granulite in the Huangtuling area, North Dabieshan, Central China. The metamorphic growth-derived detrital zircon domain yields a 207^ pb/206^Pb age in the range of (2 49±54 ) -- (2 500±180) Ma. The magmatic genesis-derived detrltal zircon domain gives a 207^pb/ 206^Pb age ranging from 2 628 Ma to 2 690 Ma, with an oldest 206^ pb/ 238^U age of (2 790 ± 150) Ma. The metamorphic overgrowth or metamorphic recrystallization zircon domain yields a diesordia with an upper intercept age of (2 044. 7 ± 29.3 ) Ma. Compositions of the mineral assemblage, major element geochemistry, and especially the complex interior texture of the zircon suggest that the prololith of the felsic granulite is of sedimentary origin. Results show that the protolith material of the granulite came from a provenance with a complex thermal history, i.e. -2.8 Ga magmatlsm and -2.5 Ga metamorphism, and was deposited in a basin not earlier than 2.5 Ga. The high-temperature and high-pressure granulite-facies metamorphic age was precisely constrained at (2.04±0.03) Ga, which indicates the granulite in Huangtuling area should be a relict of a Paleoproterozoic UHT (ultrahigh temperature) metamorphosed slab.展开更多
The Weiquan Ag-polymetallic deposit is located on the southern margin of the Central Asian Orogenic Belt and in the western segment of the Aqishan-Yamansu arc belt in East Tianshan,northwestern China. Its orebodies, c...The Weiquan Ag-polymetallic deposit is located on the southern margin of the Central Asian Orogenic Belt and in the western segment of the Aqishan-Yamansu arc belt in East Tianshan,northwestern China. Its orebodies, controlled by faults, occur in the lower Carboniferous volcanosedimentary rocks of the Yamansu Formation as irregular veins and lenses. Four stages of mineralization have been recognized on the basis of mineral assemblages, ore fabrics, and crosscutting relationships among the ore veins. Stage I is the skarn stage(garnet + pyroxene), Stage Ⅱ is the retrograde alteration stage(epidote + chlorite + magnetite ± hematite 士 actinolite ± quartz),Stage Ⅲ is the sulfide stage(Ag and Bi minerals + pyrite + chalcopyrite + galena + sphalerite + quartz ± calcite ± tetrahedrite),and Stage IV is the carbonate stage(quartz + calcite ± pyrite). Skarnization,silicification, carbonatization,epidotization,chloritization, sericitization, and actinolitization are the principal types of hydrothermal alteration. LAICP-MS U-Pb dating yielded ages of 326.5±4.5 and 298.5±1.5 Ma for zircons from the tuff and diorite porphyry, respectively. Given that the tuff is wall rock and that the orebodies are cut by a late diorite porphyry dike, the ages of the tuff and the diorite porphyry provide lower and upper time limits on the age of ore formation. The δ13C values of the calcite samples range from-2.5‰ to 2.3‰, the δ18OH2 Oand δDVSMOWvalues of the sulfide stage(Stage Ⅲ) vary from 1.1‰ to 5.2‰ and-111.7‰ to-66.1‰, respectively,and the δ13C, δ18OH2 Oand δDV-SMOWvalues of calcite in one Stage IV sample are 1.5‰,-0.3‰, and-115.6‰, respectively. Carbon, hydrogen, and oxygen isotopic compositions indicate that the ore-forming fluids evolved gradually from magmatic to meteoric sources. The δ34SV-CDTvalues of the sulfides have a large range from-6.9‰ to 1.4‰, with an average of-2.2‰, indicating a magmatic source, possibly with sedimentary contributions. The206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb ratios of the sulfides are 17.9848-18.2785,15.5188-15.6536, and 37.8125-38.4650, respectively, and one whole-rock sample at Weiquan yields206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb ratios of 18.2060, 15.5674, and 38.0511,respectively. Lead isotopic systems suggest that the ore-forming materials of the Weiquan deposit were derived from a mixed source involving mantle and crustal components. Based on geological features, zircon U-Pb dating, and C-H-OS-Pb isotopic data, it can be concluded that the Weiquan polymetallic deposit is a skarn type that formed in a tectonic setting spanning a period from subduction to post-collision. The ore materials were sourced from magmatic ore-forming fluids that mixed with components derived from host rocks during their ascent, and a gradual mixing with meteoric water took place in the later stages.展开更多
The morphology, REE geochemistry and U-Pb geochronology of zircons from quartz monzodiorite in the Sunzhuang area, Fanshi County, Shanxi Province are presented in this study. The zircon crystals can be classified into...The morphology, REE geochemistry and U-Pb geochronology of zircons from quartz monzodiorite in the Sunzhuang area, Fanshi County, Shanxi Province are presented in this study. The zircon crystals can be classified into four main types as: AB, L, S and P, and 24 subtypes such as AB4, ABs, Ls, and S3. The maximum crystallization temperature of zircon was estimated as 850℃, with the minimum of 550℃. The peak temperatures of the zircon crystallization range from 650℃ to 700℃. The abundances of Th and U in the zircon grains show large variation with the Th/U values 〉 0.4. The Th and U values also show a positive correlation in most zircons. The REE abundance of zircon in the quartz monzodiorite ranges from 280.4 ppm to 2143 ppm with an average of 856.4 ppm. The chondrite normalized zircon REE patterns show two types, one is characterized by HREE enrichment and LREE depletion with positive Ce-anomaly and negative Eu-anomaly whereas the other is HREE enriched and LREE depleted with negative Eu-anomaly but without positive Ce-anomaly, and relatively flat patterns. The LA-ICP-MS U-Pb geochronology on the zircons yields a mean age of 133-0.87 Ma. Our data on zircon morphology, composition and U-Pb geochronology reveal that the parent magma of the quartz monzodiorite which was emplaced during late Yanshanian had a mixed crust-mantle source, with crustal components dominating. The magma is inferred to have been water rich and alkaline with initial high oxygen fugacity. Post-magmatic hydrothermal activity occurred under relatively reducing conditions which was conductive for gold precipitation in the Yixingzhai gold deposit.展开更多
基金support by China Geological Survey (1212010911028)NSFC(40802020)+1 种基金Ministry of Land and Resources(1212010633902,1212010633903 and 121201 0711814)CUGB(GPMR 0735)
文摘The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite.The wall rocks are composed of Variscan porphyritic-like biotite granite and the Lower Ordovician Wubin'aobao Formation.LA-ICP-MS zircon U-Pb dating of the fine-grained granite reveals two stages of zircons,one were formed at 181.7±7.4 Ma and the other at 133.6±3.3 Ma.The latter age is believed to be the formation age of the fine-grained granite,while the former may reflect the age of inherited zircons,based on the morphological study of the zircon and regional geological setting.The Re-Os model age of molybdenite is 142.2±2.5 Ma,which is older than the diagenetic age of the fine-grained granite.Therefore the authors believe that the metallogenic age of the Wurinitu molybdenum deposit should be nearly 133.6±3.3 Ma or slightly later,i.e.,Early Cretaceous.Combined with regional geological background research,it is speculated that the molybdenum deposits were formed at the late Yanshanian orogenic cycle in the Hingganling-Mongolian orogenic belt,belonging to the relaxation epoch posterior to the compression and was associated with the closure of the Mongolia-Okhotsk Sea.
基金financially supported by the National Key Research and Development Plan(Grant No.2023YFC2906801)。
文摘Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information.This study systematically investigates the geochemistry and geochronology of garnet and zircon in the Dafang Au-Pb-Zn-Ag deposit,which represents prominent gold mineralization in southern Hunan,China.Garnet samples with distinct zoning patterns and compositional variations were identified using various analytical techniques,including Backscattered Electron(BSE)imaging,Cathodoluminescence(CL)response,textural characterization,and analysis of rare-earth elements(REE),major contents,and trace element compositions.The garnet was dated U-Pb dating,which yielded a lower intercept age of 161.06±1.93 Ma.This age is older than the underlying granodiorite porphyry,which has a concordia age of 155.13±0.95 Ma determined by zircon U-Pb dating.These results suggest that the gold mineralization may be related to the concealed granite.Two groups of garnet changed from depleted Al garnet to enriched Al garnet,and the rare earth element(REE)patterns of these groups were converted from light REE(LREE)-enriched and heavy REE(HREE)-depleted with positive europium(Eu)anomalies to medium REE(MREE)-enriched from core to rim zoning.The different REE patterns of garnet in various zones may be attributed to changes in the fluid environment and late superposition alteration.The development of distal skarn in the southern Hunan could be a significant indicator for identifying gold mineralization.
文摘As we know there is a famous East Qinling-Dabie molybdenum belt in china,where many molybdenum deposits located such as super giant Jinduicheng,Sandaozhuang,Shangfanggou and Nannihu molybdenum deposits(Li,2008) ;The molybdenum mineralization in the East Qinling-Dabie belt clusters into three groups or mineralization pulses:233-221,148-138 and 131-112 Ma(Mao et al,2008).
基金supported by the National Science Foundation of China (grant No. 41272223)China Geological Survey (grants No. DD20160049, 1212011220247 and 12120110300015)
文摘Objective The Liao-Ji orogenic belt is a famous Paleoproterozoic orogenic belt in the East Block of the North China Craton(NCC),which extend in NE-SW direction.The geological mass in the Paleoproterozoic Liao-Ji belt is mainly composed of the Liaoji granites and metamorphic volcanic-sedimentary rocks of the Liaohe group(and its
基金This paper is supported by the China Geological Survey (No. 1212010510416)
文摘A large number of basic dikes, which indicate an important tectonic-magmatic event in the eastern part of the Central Qilian (祁连) orogenic belt, were found from Maxianshan (马衔山) rock group, Yongjing (永靖) county, Gansu (甘肃) Province, China. According to the research on the characteristics of geology and petrology, the basic dike swarms, widely intruded in Maxianshan rock group, are divided into two phases by the authors. U-Pb isotope of zircons from the basic dikes above two phases is separately determined by LA-ICP-MS in the Key Laboratory of Continental Dynamics of Northwest University, China and the causes of formation of the zircons are studied using CL images. The formation age of the earlier phase of metagabbro dikes is (441.1±1.4) Ma (corresponding to the early stage of Early Silurian), and the age of the main metamorphic period is (414.3±1.2) Ma (corresponding to the early stage of Early Devonian). The formation age of the later phase of diabase dike swarms is (434±1.0) Ma (corresponding to the late stage of Early Silurian). The cap- tured-zircons from diabase dike swarms saved some information of material interfusion by Maxianshan rock group (^207pb/206pb apparent ages are (2 325±3)-(2 573 ±6) Ma), and some zircons from diabase dike swarms also saved impacted information by tectonic thermal event during the late period of Caledonian movement (^206pb/^238U apparent ages are (400±2)-(429±2) Ma). By combining the results of the related studies, the basic dikes within Maxianshan rock group were considered to be formed in the transfer period, from subductional orogeny towards collisional orogeny, which represents geological records of NW-SE extension during regional NE-SW towards intense compression in the Central Qilian block.
基金financially supported by the Institute of Geomechanics in Chinese Academy of Geological Sciences (grant No. DZLXJK201608)Geological Survey Project (grant No. DD20160183)+1 种基金the Key Lab of Shale Oil and Gas Geological of Chinese Academy of Geological Sciencesthe Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits
文摘Objective The Guanzhong Basin in the transitional zone of the Qinling orogenic belt and the southern margin of the Ordos Basin has been extensively studied in recent years.Although some results have been obtained,some problems such as whether the materials from the North China craton and the Qinling orogenic belt are detrital sedimentary rocks of the Guanzhong Basin still remain unresolved.
基金Supported by Project of National Natural Science Foundation of China(No.41872234)。
文摘Zircon U-Pb isotope dating and whole-rock geochemical analyses were undertaken for the rhyolite,rhyolitic lithic crystal tuff and dacitic tuff from the Manketouebo Formation in the Keyihe area,in order to constrain their genesis and tectonic significance.Zircon LA-ICP-MS U-Pb data indicate that the rhyolite and rhyolitic lithic crystal tuff were formed during 137±5 Ma and 143±1 Ma,respectively.These volcanic rocks have high SiO2(70.03%–76.46%)and K2O+Na2O(8.10%–9.52%)contents,but low CaO(0.03%–0.95%)and MgO(0.07%–0.67%)contents,which belong to the peraluminous and high-K calc-alkaline rocks.They are enriched in light rare earth elements(REEs),and exhibit fractionation of light over heavy REEs,withδEu values of 0.37–0.83.The volcanic rocks are enriched in LILEs(e.g.,Rb,U and K)and depleted in HFSEs(e.g.,Nb,Ti,P and Ta).The chemical composition suggests that these volcanic rocks formed by partial melting of crust material.Combined with previous regional research results,the authors consider that the volcanic rocks of the Manketouebo Formation in the Keyihe area were formed under an extensional environment related to the closure of the Mongolia–Okhotsk Ocean.
文摘Zircon U-Pb geochronology has become a keystone tool across Earth science, arguably providing the gold standard in resolving deep geological time. The development of rapid in situ analysis of zircon (via laser ablation and secondary ionization mass spectrometry) has allowed for large amounts of data to be generated in a relatively short amount of time and such large volume datasets offer the ability to address a range of geological questions that would otherwise remain intractable (e.g. detrital zircons as a sedi- ment fingerprinting method). The ease of acquisition, while bringing benefit to the Earth science com- munity, has also led to diverse interpretations of geochronological data. In this work we seek to refocus U -Pb zircon geochronology toward best practice by providing a robust statistically coherent workflow. We discuss a range of data filtering approaches and their inherent limitations (e.g. discordance and the reduced chi-squared; MSWD). We evaluate appropriate mechanisms to calculate the most geologically appropriate age from both 238U/206pb and 207pb/206pb ratios and demonstrate the cross over position when chronometric power swaps between these ratios. As our in situ analytical techniques become progressively more precise, appropriate statistical handing of U-Pb datasets will become increasingly pertinent.
基金the National NaturalScience Foundation of China(Grant No:140032010-C,49972063)the National Key Basic Researchand Development Project of China(Grant No:G1999075508)+1 种基金the Ministry of Education's Teachers Fund(No:40133020) the Opening Fund of Key Laboratory of Lithosphere Tectonics.
文摘Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into two groups according to their REE patterns and trace element features. Rocks of the first group are depleted in LREE while rocks of the second group are slightly depleted in LREE or flat from LREE to HREE without significant Eu anomaly. The first group of rocks have (La/Yb)N=0.33-0.55, (La/Sm)N= 0.45-0.65, and their La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are averaged at 1.20, 0.12, 31.02, 2.92 and 198, respectively, close to those of typical N-MORB. The second group of rocks have (La/Yb)N=0.63-0.95, (La/ Sm)N = 0.69--0.90, and their average La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are 0.82, 0.83, 1.15, 0.16, 19.00, 2.58 and 225, respectively, which lie between those of typical N-MORB and E-MORB but closer to the former. The two groups of rocks both exhibit flat patterns from Th to Yb in the highly incompatible elements spider diagram, but the first group of rocks have lower element abundances than the modern N-MORB, indicating a derivation of their mantle source from more depleted mantle source than the present N-MORB. The abundances of Th, Ta, Nb, La and Ce in the second group of rocks are slightly higher than those of the present N-MORB, and other elements, such as Hf, Zr, Sm, Ti, Y and Yb, are close to those of the N-MORB, indicating that the original magma was derived from depleted mantle but mixed with the enriched mantle. These characteristics, combined with the regional geology and previous studies, provide further evidence that the mafic-ultramafic rocks have the features of a typical ophiolite.Zircon grains from the amphibolite are generally rounded, and in most of them a distinguishable core-mantle texture is preserved as shown in the cathodoluminescence (CL) images. The core or core-mantle parts of the zircon grains are also rounded, same as those in basalts from other regions of the world. The LA-ICP-MS trace element and U-Pb isotopic analyses show that the zircon grains from the amphibolites are similar to the typical magmatic zircon in terms of their very low U and Th contents (62.36-0.10 μg/g and 78.47-0.003 μg/g, respectively). Seven pits from the core and core-mantle parts of the zircon grains yielded an average weighted 206Pb/ 238U age of 973±35 (2σ) Ma with the Th/U ratios range from 0.01 to 8.38 and mostly greater than 0.23. This age is consistent within the error range with the whole-rock Sm-Nd isochron age of 1030±46 Ma for the same kind of rocks reported by Dong et al. (1997a). In a combined analysis with the zircon positions on the CL images and the corresponding Th/U ratios, the age of 973±35 Ma is probably the formation age of tholeiite, the protolith of the Songshugou amphibolite. The geochronological determination gives further evidence that the Songshugou ophiolite was formed during the Neoproterozoic. In addition, there is one pit from the rim of a zircon grain giving a 206Pb/ 238U age of 5721199 (1σ) Ma with a Th/U ratio of 0.08. It may represent the age of the accretionary zircon in the amphibolite-facies metamorphism.
文摘An early Paleozoic Proto-Tethys ocean in western Yunnan has long been postulated although no robust geological evidence has been identified.Here we investigated the recently-identified Mayidui and Wanhe ophiolitic mélanges in SW Yunnan,which occurs in a N-S trending belt east of the late Paleozoic Changning-Menglian suture zone.The ophiolites consist mainly of meta-basalts(amphibole schists),meta-(cumulate)gabbros and gabbroic diorites,and meta-chert-shale,representing ancient oceanic crust and pelagic and hemipelagic sediments,respectively.Six samples of gabbros and gabbroic diorites from 3 profiles(Mayidui,Kongjiao and Yinchanghe)yielded zircon U-Pb ages between 462±6 Ma and 447±9 Ma,constraining the formation of the Mayidui and Wanhe ophiolites to Middle Ordovician.Gabbros from the Mayidui and Kongjiao profiles share similar geochemical characteristics with affinities to tholeiitic series,and are characterized by depleted to slightly enriched LREEs relative to HREEs with(La/Sm)N=0.69-1.87,(La/Yb)N=0.66-4.72.These,along with their predominantly positive wholerock eNd(t)and zircon eHf(t)values,indicate a MORB-like magma source.By contrast,the meta-mafic rocks from the Yinchanghe profile show significantly enriched LREEs((La/Sm)N=0.97-3.33,(La/Yb)N=1.19-14.93),as well as positive whole-rock eNd(t)and positive to negative zircon eHf(t)values,indicating an E-MORB-type mantle source.These geochemical features are consistent with an intra-oceanic setting for the formation of the Mayidui-Wanhe ophiolites.Our data,integrated with available geological evidence,provide robust constraints on the timing and nature of the Mayidui-Wanhe ophiolitic mélange,and suggest that the ophiolites represent remnants of the Proto-Tethys Ocean,which opened through separation of the Indochina and Simao blocks from the northern margin of Gondwana before the Early Cambrian,and evolved through to the Silurian.
基金supported by the "973"Project for Basic Research of China (No. 2011CB403103)Ministry of Land and Resources’ Special Funds for Scientific Research on Public Causes (No. 200911007-02)China Geological Survey’ Special Funds for Scientific Research on Qinghai-Tibet Plateau (No. 1212010012005)
文摘The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipulated in detail in this paper by using the laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U-Pb dating method. The ages of biotite monzogranite that were formed before mineralization in the southwest of this mining district are 70±1 Ma (mean square of weighted deviates (MSWD) =9.5, n=8) and 60.60±0.31 Ma (MSWD=3.8, n=16), which belong to the late Cretaceous-early Paleocene in age. That means, they are products of an early tectonicmagmatic event of the collision between the Indian and Asian continentals. The ages of ore-bearing monzogranite porphyry and ore-bearing diorite porphyrite are 16.23±0.19 Ma (MSWD=2.0, n=26) and 15.16±0.09 Ma (MSWD=3.9, n=5) separately, which belong to the middle Miocene in age; namely, they are products of the Gangdese post-collision extensional stage when crust-mantle materials melted and mixed as well as magmatic intrusion simultaneously occurred. Some zircons with ages of 203.6±2.2 Ma (MSWD=1.18, n=7) were captured in the ore-bearing diorite porphyrite, which shows that there had been tectono-magmatic events in the late Triassic-early Jurassic. Molybdenum (copper) ore-bodies produced in the monzogranite porphyry and copper (molybdenum) ore-bodies produced in the diorite porphyrite are the main ore types in this ore deposit. The model ages of Re-Os isotopic dating for the 11 molybdenite are 13.97-15.84 Ma, while isochron ages are 14.09±0.49 Ma (MSWD=26). The isochron ages of seven molybdenite from molybdenum (copper) ore with monzogranite porphyry type are 14.11±0.31 Ma (MSWD=5.2). There is great error in the isochron ages of four molybdenite from copper (molybdenum) ore with diorite porphyrite type, and their weighted average model ages of 14.6±1.2 Ma (MSWD=41), which generally represent the mineralization age. The results about the Re-Os isotopic dating of molybdenite in the ore of different types have limited exactly that, the minerlazation age of this ore deposits is about 14.09 Ma, which belongs to the middle Miocene mineralization. The Bangpu deposit has a uniform metallogenic dynamics background with the porphyry type and skarn-type deposits such as Jiama, Qulong and others.
基金funded by National Natural Science Foundation of China (Grant No. 90914002, 41030423,41173062, 40973035)the National Basic Research Program of China (Grant No. 2009CB421003)
文摘The Shihu gold deposit, situated in the Taihang Mesozoic orogen of the North China Craton (NCC), is hosted by ductile-brittle faults within Archean metamorphic core complex. The deposit is characterized by gold-bearing quartz-polymetallic sulfides veins. The Mapeng granitoids stock and intermediate-basic dikes intruded the metamorphic basement rocks, and are spatially related to gold mineralization. Detailed laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) U-Pb zircon ages of the granitic rocks, dykes and mineralized quartz veins in the studied area reveal its magmatic and mineralized history. The mineralized quartz veins contain inherited zircons with ages of about 2.55 Ga and 1.84 Ga, probably coming from the basement. These two Precambrian events are coeval with those in other parts of the NCC. The Mapeng granitoid stock, the largest intrusion in the area, was emplaced at ca. 130 Ma, and is coeval with magmatic zircon populations from diorites and quartz diorite pophyrites in the same region. The ca. 130 Ma magmatism and gold mineralization were most likely related to an underplating event that took place in the Taihang orogen at Late Mesozoic. The timing of gold mineralization with respect to felsic magmatism in the area is similar to those observed in other major gold-producing provinces in the NCC. This episode is simultaneous with those in the eastern margin of NCC, indicative of a widespread late Yanshanian metallogenic event that was a response to the Early Cretaceous lithosphere in the eastern NCC, in which the mesothermal gold deposits were formed from similar tectono-magmatic environments.
基金Shaanxi Mineral Resources and Geological Survey (Grant no. 214027160195)a project on magmatism and W-Mo mineralization in the mineralized areas of western Zhen’anShaanxi Mineral Resources and Geological Survey (Grant no. 61201506280)a project that combined exploration and technical approaches in the mineralized areas of the Qinling mineralized belt。
文摘A W-Mo mineralized region is located along the northern margin of the South Qinling tectonic belt of China. WMo mineralization occurs mainly in Cambrian–Ordovician clastic and carbonate rocks, and the ore bodies are structurally controlled by NW–SE-and NNE–SSW-striking faults. Evidence for magmatism in the area is widespread and is dominated by intermediate–felsic intrusives or apophyses, such as the Dongjiangkou, Yanzhiba, Lanbandeng, and Sihaiping granitic bodies. Quartz-vein-type mineralization and fault-controlled skarn-type mineralization dominate the ore systems, with additional enrichment in residual deposits. At present, there are few or insufficient studies on(1) the age of mineralization,(2) the relationship between intermediate–felsic granite and W-Mo mineralization,(3) the source of ore-forming materials, and(4) the metallogenic and tectonic setting of the mineralized area. In this paper, we present geochronology results for numerous intrusive granitic bodies in the South Qinling tectonic belt. U-Pb zircon geochronology of the Lanbandeng monzogranite and Wangjiaping biotite monzogranite yields ages of 222.7 ± 2.3 and 201.9 ± 1.8 Ma, respectively. In contrast to the Late Triassic age of the Lanbandeng monzogranite, the age of the newly discovered Wangjiaping biotite monzogranite places it at the Triassic–Jurassic boundary. Re-Os molybdenite geochronology on the Qipangou W-Mo deposit yielded a model age of 199.7 ± 3.9 Ma, indicating the deposit formed in the early Yanshanian period of the Early Jurassic. Granitoid intrusions in the mineralized area are characterized by composite granite bodies that crystallized at ca. 240–190 Ma. While there were multiple stages of intrusion, most occurred at 210–220 Ma, with waning magmatic activity at 200–190 Ma. The Re-Os age of molybdenite in the region is ca. 200–190 Ma, which may represent a newly discovered period of W-Mo metallogenesis that occurred during the final stages of magmatism. The heat associated with this magmatism drove ore formation and might have provided additional ore-forming components for metallogenesis(represented by the Wangjiaping biotite monzogranite). Ore materials in the mineralized area were derived from mixed crustal and mantle sources. Enrichment of the region occurred during intracontinental orogenesis in the late Indosinian–Yanshanian, subsequent to the main Indosinian collision. At this time, the tectonic environment was dominated by extension and strike-slip motion.
基金This research was supported by the National Natural Science Foundation of China (No. 40372036)the Key Project of the Ministry of Education, China (No. 306007).
文摘The Guandimao and Wawutang plutons are located at the center of Hunan, South China. The former is mainly composed of biotite monzonitic granites/granodiorites and two-mica monzonltic granites, but the latter only consists of biotite monzonitic granites. The zircon ages of 203.0±1.6 Ma (biotite monzonitic granites) and 208.0-23.2 Ma (two-mica monzonltic granites) for the Guandimao pluton and 204±3 Ma for the Wawutang pluton obtained with the LA-ICP-MS U-Pb dating indicate that they were formed during the late Indosinian. In consideration of other geochronological data from Indosinian rocks of South China and adjacent regions, it is inferred that the two plutons were derived from crustal materials by decompressional melting in a post-collisional tectonic setting during spontaneous thinning of the thickened curst. Moreover, the inherited zircon age of 1273±57 Ma from the Wawutang pluton indicates that the source of the two plutons is related to the early Proterozoic crustal basement.
基金funded by the National Natural Science Foundation of China (grant No.41502211)the China Geological Survey (grants No.1212011120701 and 1212011120711)Hebei Province Education Department (grant No.ZC20165013)
文摘Objective The Bayanhua Nb-enriched gabbro is newly discovered in the Diyanmiao-Meilaotewula SSZ-type ophiolitic m61ange belt of the Hegenshan suture zone, Inner Mongolia. Nb-enriched arc gabbros are usually believed to result from partial melting of the mantle wedge peridotites metasomatized by slab melts derived from the subducting oceanic slab, which represent arc magmatic markers of the oceanic subduction zone. However, whether the Hegenshan ocean basin of the Paleo-Asian Ocean was in its subduction stage in the Early Permian requires further study for a final conclusion, and what is the evolution process of the oceanic subduction and lithospheric mantle of the Hegenshan suture zone remains speculative for the lack of further definitely petrological and chronological evidence and constraints. Therefore, this study carried out zircon LA-ICP-MS U-Pb geochronology and geochemistry on the Bayanhua Nb-enriched gabbro to discuss its origin, in order to provide new evidence for the tectonic evolution of the Hegenshan suture zone of the eastern Central Asian Orogenic Belt.
基金financially supported by the National Natural Science Foundation of China(grant No.41502076)the Science Research Fund of Yunnan Provincial Education Department(grant No.2015Y066)+1 种基金the Provincial People Training Program of Kunming University of Science and Technology(grant No.KKSY201421042)the Project of China Geological Survey(grant No.12120114013701)
文摘Objective The Late Cretaceous Xiuwacu ore-bearing porphyry is located in the Geza area of southern Yidun arc, SW China. In this area, the rock mass is mainly composed of three lithofacies: biotite granite porphyry, monzonitic granite and light alkali feldspar granite. As a part of the Yidun arc, the Geza arc has common structure and temporal- spatial evolution with the ~idun arc, which has experienced three stages of oceanic crust subduction, collision orogeny and intracontinent convergence stages. The molybdenite ores in the area are mainly hosted in monzonitic granite-porphyry and structural fracture zone, and the ore bodies are strictly controlled by faults. In recent years, great geological prospecting results have been achieved in Xiuwacu, and the deposit has reached a medium scale. However, there are few researches on the metallogenic porphyry. Based on the previous research, we determined the rock-forming and ore-forming age of the porphyry, and found that there were two stages of magmatism intrusion in Xiuwacu: Indosinian and Yanshanian. We also discussed the geochemical characteristics and source area of the rocks in the area.
基金funded by the National Natural Science Foundation of China(grants No.41572191 and 41702211)the Natural Science Foundation of Guangxi(grant No.2017GXNSFBA198166)
文摘Objective The northern Guangxi region is in the southwestern part of the Southern China continent,which is located at the junction of the southwest section of the Early Paleozoic Yangtze block and Cathaysian block.A series of NNE-trending ductile shear zones are developed in this region,and these ductile shear zones are mostly previously suggested boundary faults of the Early Paleozoic Yangtze block and Cathaysian block,such as the Shoucheng–Piaoli ductile shear zone in Northern Guangxi (Meng Yuanku et al., 2016; Zhang Xuefeng et al., 2015).
文摘Information about the protolith of the Huangtuling granulite in North Dabieshan has been unavailable. The complex evolution history of the rock and its host basement must be further discussed. LA-ICP-MS U-Pb dating was conducted on three textural domains in zircon from a high-temperature, high-pressure felsic granulite in the Huangtuling area, North Dabieshan, Central China. The metamorphic growth-derived detrital zircon domain yields a 207^ pb/206^Pb age in the range of (2 49±54 ) -- (2 500±180) Ma. The magmatic genesis-derived detrltal zircon domain gives a 207^pb/ 206^Pb age ranging from 2 628 Ma to 2 690 Ma, with an oldest 206^ pb/ 238^U age of (2 790 ± 150) Ma. The metamorphic overgrowth or metamorphic recrystallization zircon domain yields a diesordia with an upper intercept age of (2 044. 7 ± 29.3 ) Ma. Compositions of the mineral assemblage, major element geochemistry, and especially the complex interior texture of the zircon suggest that the prololith of the felsic granulite is of sedimentary origin. Results show that the protolith material of the granulite came from a provenance with a complex thermal history, i.e. -2.8 Ga magmatlsm and -2.5 Ga metamorphism, and was deposited in a basin not earlier than 2.5 Ga. The high-temperature and high-pressure granulite-facies metamorphic age was precisely constrained at (2.04±0.03) Ga, which indicates the granulite in Huangtuling area should be a relict of a Paleoproterozoic UHT (ultrahigh temperature) metamorphosed slab.
基金funded by the China Geological Survey (No. 1212011220731)
文摘The Weiquan Ag-polymetallic deposit is located on the southern margin of the Central Asian Orogenic Belt and in the western segment of the Aqishan-Yamansu arc belt in East Tianshan,northwestern China. Its orebodies, controlled by faults, occur in the lower Carboniferous volcanosedimentary rocks of the Yamansu Formation as irregular veins and lenses. Four stages of mineralization have been recognized on the basis of mineral assemblages, ore fabrics, and crosscutting relationships among the ore veins. Stage I is the skarn stage(garnet + pyroxene), Stage Ⅱ is the retrograde alteration stage(epidote + chlorite + magnetite ± hematite 士 actinolite ± quartz),Stage Ⅲ is the sulfide stage(Ag and Bi minerals + pyrite + chalcopyrite + galena + sphalerite + quartz ± calcite ± tetrahedrite),and Stage IV is the carbonate stage(quartz + calcite ± pyrite). Skarnization,silicification, carbonatization,epidotization,chloritization, sericitization, and actinolitization are the principal types of hydrothermal alteration. LAICP-MS U-Pb dating yielded ages of 326.5±4.5 and 298.5±1.5 Ma for zircons from the tuff and diorite porphyry, respectively. Given that the tuff is wall rock and that the orebodies are cut by a late diorite porphyry dike, the ages of the tuff and the diorite porphyry provide lower and upper time limits on the age of ore formation. The δ13C values of the calcite samples range from-2.5‰ to 2.3‰, the δ18OH2 Oand δDVSMOWvalues of the sulfide stage(Stage Ⅲ) vary from 1.1‰ to 5.2‰ and-111.7‰ to-66.1‰, respectively,and the δ13C, δ18OH2 Oand δDV-SMOWvalues of calcite in one Stage IV sample are 1.5‰,-0.3‰, and-115.6‰, respectively. Carbon, hydrogen, and oxygen isotopic compositions indicate that the ore-forming fluids evolved gradually from magmatic to meteoric sources. The δ34SV-CDTvalues of the sulfides have a large range from-6.9‰ to 1.4‰, with an average of-2.2‰, indicating a magmatic source, possibly with sedimentary contributions. The206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb ratios of the sulfides are 17.9848-18.2785,15.5188-15.6536, and 37.8125-38.4650, respectively, and one whole-rock sample at Weiquan yields206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb ratios of 18.2060, 15.5674, and 38.0511,respectively. Lead isotopic systems suggest that the ore-forming materials of the Weiquan deposit were derived from a mixed source involving mantle and crustal components. Based on geological features, zircon U-Pb dating, and C-H-OS-Pb isotopic data, it can be concluded that the Weiquan polymetallic deposit is a skarn type that formed in a tectonic setting spanning a period from subduction to post-collision. The ore materials were sourced from magmatic ore-forming fluids that mixed with components derived from host rocks during their ascent, and a gradual mixing with meteoric water took place in the later stages.
基金supported by the Key Program of National Natural Science Foundation of China (Grand No.90914002)the China State Administrative Office of Ore-Prospecting Project for Critical Mines (Grant No.20089937)+1 种基金Nuclear energy research project:study on Sandstone-type uranium deposits prediction technology in Junggar superimposed large basin (Grant No.DH1142)the Introducing Talents of Discipline to Universities Program (B07011)
文摘The morphology, REE geochemistry and U-Pb geochronology of zircons from quartz monzodiorite in the Sunzhuang area, Fanshi County, Shanxi Province are presented in this study. The zircon crystals can be classified into four main types as: AB, L, S and P, and 24 subtypes such as AB4, ABs, Ls, and S3. The maximum crystallization temperature of zircon was estimated as 850℃, with the minimum of 550℃. The peak temperatures of the zircon crystallization range from 650℃ to 700℃. The abundances of Th and U in the zircon grains show large variation with the Th/U values 〉 0.4. The Th and U values also show a positive correlation in most zircons. The REE abundance of zircon in the quartz monzodiorite ranges from 280.4 ppm to 2143 ppm with an average of 856.4 ppm. The chondrite normalized zircon REE patterns show two types, one is characterized by HREE enrichment and LREE depletion with positive Ce-anomaly and negative Eu-anomaly whereas the other is HREE enriched and LREE depleted with negative Eu-anomaly but without positive Ce-anomaly, and relatively flat patterns. The LA-ICP-MS U-Pb geochronology on the zircons yields a mean age of 133-0.87 Ma. Our data on zircon morphology, composition and U-Pb geochronology reveal that the parent magma of the quartz monzodiorite which was emplaced during late Yanshanian had a mixed crust-mantle source, with crustal components dominating. The magma is inferred to have been water rich and alkaline with initial high oxygen fugacity. Post-magmatic hydrothermal activity occurred under relatively reducing conditions which was conductive for gold precipitation in the Yixingzhai gold deposit.