Flexible sensors have been widely investigated due to their broad application prospects in various flexible electronics.However,most of the presently studied flexible sensors are only suitable for working at room temp...Flexible sensors have been widely investigated due to their broad application prospects in various flexible electronics.However,most of the presently studied flexible sensors are only suitable for working at room temperature,and their applications at high or low temperatures are still a big challenge.In this work,we present a multimodal flexible sensor based on functional oxide La0.7Sr0.3MnO3(LSMO)thin film deposited on mica substrate.As a strain sensor,it shows excellent sensitivity to mechanical bending and high bending durability(up to 3600 cycles).Moreover,the LSMO/Mica sensor also shows a sensitive response to the magnetic field,implying its multimodal sensing ability.Most importantly,it can work in a wide temperature range from extreme low temperature down to 20K to high temperature up to 773 K.The flexible sensor based on the flexible LSMO/mica hetero-structure shows great potential applications for flexible electronics using at extreme temperature environment in the future.展开更多
采用脉冲激光溅射法分别在Sr Ti O3(STO)和Si(001)衬底上制备出La0.7Sr0.3Mn O3(LSMO)薄膜。通过X射线衍射仪、原子力显微镜、能谱仪以及磁性测量系统研究了薄膜晶体结构、表面形貌、成分以及电阻-温度特性。结果表明:STO衬底上的LSMO...采用脉冲激光溅射法分别在Sr Ti O3(STO)和Si(001)衬底上制备出La0.7Sr0.3Mn O3(LSMO)薄膜。通过X射线衍射仪、原子力显微镜、能谱仪以及磁性测量系统研究了薄膜晶体结构、表面形貌、成分以及电阻-温度特性。结果表明:STO衬底上的LSMO薄膜比Si衬底上的LSMO薄膜电阻低,金属-绝缘转变温度高。展开更多
基金National Natural Science Foundation of China(51302295,61371059)Natural Science Foundation of Shanghai(13ZR1445600)Visiting Scholar Foundation of Key Discipline Laboratory of New Micro/Nano Device and System Technology in Chongqing University(2014MS05)
基金This work was supported financially by the National Natural Science Foundation of China(No.51872099)the Project for Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2016),the Guangdong Innovative Research Team Program(No.2013C102)+1 种基金the Guangdong Provincial Key Laboratory of Optical Information Materials and Technology(No.2017B030301007)Science and Technology Program of Guangzhou(No.2019050001).
文摘Flexible sensors have been widely investigated due to their broad application prospects in various flexible electronics.However,most of the presently studied flexible sensors are only suitable for working at room temperature,and their applications at high or low temperatures are still a big challenge.In this work,we present a multimodal flexible sensor based on functional oxide La0.7Sr0.3MnO3(LSMO)thin film deposited on mica substrate.As a strain sensor,it shows excellent sensitivity to mechanical bending and high bending durability(up to 3600 cycles).Moreover,the LSMO/Mica sensor also shows a sensitive response to the magnetic field,implying its multimodal sensing ability.Most importantly,it can work in a wide temperature range from extreme low temperature down to 20K to high temperature up to 773 K.The flexible sensor based on the flexible LSMO/mica hetero-structure shows great potential applications for flexible electronics using at extreme temperature environment in the future.
文摘采用脉冲激光溅射法分别在Sr Ti O3(STO)和Si(001)衬底上制备出La0.7Sr0.3Mn O3(LSMO)薄膜。通过X射线衍射仪、原子力显微镜、能谱仪以及磁性测量系统研究了薄膜晶体结构、表面形貌、成分以及电阻-温度特性。结果表明:STO衬底上的LSMO薄膜比Si衬底上的LSMO薄膜电阻低,金属-绝缘转变温度高。