随着智能移动设备的发展和普及,空间定位技术不断成熟,基于位置的社交网络(Location-based Social Network,LBSN)得到了广泛应用。大量用户在LBSN签到,以及针对签到进行的评论不仅记录了用户的时空行为轨迹,也为研究用户行为模式和特征...随着智能移动设备的发展和普及,空间定位技术不断成熟,基于位置的社交网络(Location-based Social Network,LBSN)得到了广泛应用。大量用户在LBSN签到,以及针对签到进行的评论不仅记录了用户的时空行为轨迹,也为研究用户行为模式和特征偏好提供了巨大的机会。提出一种基于LBSN签到数据的商业店铺选址推荐系统,首先分析用户在LBSN上的签到时间、签到地点、签到商铺类型3个方面的特征;然后提出4个影响商铺选址的因素:多样性、竞争性、相关性和客流性;最后实现商业选址推荐系统,并根据选址因素生成最优候选。并以此为基础进行相关实验来验证推荐结果,结果符合相关预期。展开更多
利用用户生成短文本(User Generated Short Text,UGST)推测用户的细粒度位置对基于位置服务的应用有重要的意义。现有的细粒度位置推测方法较少引入UGST中的语义信息,且未考虑UGST中语义实体的权重,因此性能较低。针对这些问题,提出了...利用用户生成短文本(User Generated Short Text,UGST)推测用户的细粒度位置对基于位置服务的应用有重要的意义。现有的细粒度位置推测方法较少引入UGST中的语义信息,且未考虑UGST中语义实体的权重,因此性能较低。针对这些问题,提出了一种基于位置社交网络(Location-based Social Network,LBSN)的UGST细粒度位置推测方法。该方法包括如下3个过程:1)使用Foursquare中的UGST构建实体和位置之间的关联模型,以解决位置标记稀疏问题;2)判断待推测位置的UGST中是否含有位置信息,过滤不包含任何位置语义信息的UGST,以消除噪声短文本的干扰;3)根据UGST内容推测可能的候选位置,并对每个候选位置进行排名,选择排名最靠前的位置作为推测位置。实验结果验证了所提方法的有效性。展开更多
兴趣点(Point-Of-Interest,POI)推荐是基于位置的社交网络中(Location-Based Social Networks,LBSN)一种重要的个性化推荐功能.本文提出基于预测的兴趣点推荐算法.该算法根据LBSN中用户历史POI数据分布学习用户出行行为,利用变阶的马尔...兴趣点(Point-Of-Interest,POI)推荐是基于位置的社交网络中(Location-Based Social Networks,LBSN)一种重要的个性化推荐功能.本文提出基于预测的兴趣点推荐算法.该算法根据LBSN中用户历史POI数据分布学习用户出行行为,利用变阶的马尔科夫算法根据当前位置预测用户未来到达POI的语义信息,最终推荐时考虑用户签到次数的差异为用户推荐N个具有高兴趣度的POI.实验结果表明:本文提出的算法在准确率和召回率上均高于两个对比算法,说明该算法提高了兴趣点推荐效果,并可以有效的推荐给用户下一个访问的兴趣点.展开更多
近年来,异质网络中的社区发现逐渐成为人们关注的研究热点,然而现有大多数非重叠或重叠的社区发现方法都局限于考虑单一类型的网络结构,而无法适用于包含多模实体及其多维关系的异质网络,基于位置的社交网络(location based social netw...近年来,异质网络中的社区发现逐渐成为人们关注的研究热点,然而现有大多数非重叠或重叠的社区发现方法都局限于考虑单一类型的网络结构,而无法适用于包含多模实体及其多维关系的异质网络,基于位置的社交网络(location based social network,LBSN)作为最近兴起的一种新型异质网络,如何有效发现其含有多维关系的复杂社区结构对现有研究来说是一个挑战性的难题.为此,提出了一种融合用户与位置实体及其多维关系的社区发现方法MRNMF(multi-relational nonnegative matrix factorization),该方法通过建立基于非负矩阵分解的联合聚类目标函数,并考虑融入用户社交关系、用户位置签到关系以及兴趣点特征等多维度的影响因素,能同时获得紧密关联的用户模糊社区与兴趣点聚簇结构,以有效缓解推荐中的数据稀疏问题.在2种真实LBSN数据集上的实验结果表明,所提出的MRNMF方法同时在兴趣点与朋友这双重推荐上比其他传统方法具有更优越的推荐性能.展开更多
兴趣点(POI,point of interest)推荐是位置社交网络(LBSN,location-based social network)重要的个性化服务,广泛用于热门景点推荐和旅游线路规划等。传统的基于协同过滤的推荐算法根据用户相似性和位置相似性进行推荐,未考虑推荐用户...兴趣点(POI,point of interest)推荐是位置社交网络(LBSN,location-based social network)重要的个性化服务,广泛用于热门景点推荐和旅游线路规划等。传统的基于协同过滤的推荐算法根据用户相似性和位置相似性进行推荐,未考虑推荐用户与目标用户间的信任关系,而信任关系有助于提高推荐系统的准确性、顽健性和用户满意度。首先分析了信任与不信任关系的传播特征,然后给出了信任度的表示和计算方法,最后提出了融合用户相似性、地理位置相似性和信任关系的混合推荐模型。实验结果表明,与传统协同过滤推荐方法相比,融合信任关系的混合推荐方法显著提高了推荐结果的准确性和用户满意度。展开更多
近年来,以微博、微信朋友圈、Foursquare、Gowalla、Facebook Place等基于位置的社交网络(Location Based Social Network,LBSN)得到迅速发展,庞大的用户群体每天都会通过这些服务产生大量的签到数据,这些异构的网络数据为研究用户的行...近年来,以微博、微信朋友圈、Foursquare、Gowalla、Facebook Place等基于位置的社交网络(Location Based Social Network,LBSN)得到迅速发展,庞大的用户群体每天都会通过这些服务产生大量的签到数据,这些异构的网络数据为研究用户的行为特征及潜在特征提供巨大的机遇与挑战。然而现有研究少有对LBSN签到数据进行具体描述与分析,以服务于兴趣点推荐为最终目的,利用Foursquare、Gowalla数据集从用户签到轨迹、用户签到频次、用户签到位置3个方面对用户签到数据进行分析、可视化,探索了用户签到数据中存在的空间特征及个性化行为。展开更多
随着GPS设备(如智能手机、GPS导航仪、GPS记录仪等)的广泛应用,其产生的位置信息也越来越多。基于位置的社交网络(Location-Based Social Networks,LBSNs)推荐系统受到了更多的关注。旅游行程推荐是LBSNs中非常热门的研究课题之一,但是...随着GPS设备(如智能手机、GPS导航仪、GPS记录仪等)的广泛应用,其产生的位置信息也越来越多。基于位置的社交网络(Location-Based Social Networks,LBSNs)推荐系统受到了更多的关注。旅游行程推荐是LBSNs中非常热门的研究课题之一,但是现有研究主要侧重向单个用户推荐旅游行程,缺乏向群体推荐行程的工作。因此提出了一种LBSNs中的群体行程推荐方法。该方法首先根据用户的签到记录,使用K-means和谱聚类方法挖掘用户群体及其偏好;然后综合考虑群体对行程的时间和价格的约束,设计了行程推荐算法向群体用户推荐符合其偏好的旅游行程;最后,使用新浪微博用户的真实签到记录进行实验分析,结果表明所提出的群体行程推荐方法具有良好效果。展开更多
针对基于位置的社交网络(Location-Based Social Network, LBSN)中用户签到数据的高稀疏性问题及用户隐私问题,提出了一种混合推荐模型(SoGeoCat).首先,通过用户潜在兴趣点数据模型,学习用户的潜在兴趣点;其次,将用户的潜在兴趣点纳入...针对基于位置的社交网络(Location-Based Social Network, LBSN)中用户签到数据的高稀疏性问题及用户隐私问题,提出了一种混合推荐模型(SoGeoCat).首先,通过用户潜在兴趣点数据模型,学习用户的潜在兴趣点;其次,将用户的潜在兴趣点纳入融合类别信息的矩阵分解模型中并优化;最后,根据用户特征矩阵、兴趣点特征矩阵,提出推荐策略.基于Foursquare真实数据集,实验结果表明:(1)相比于其他几个推荐模型,该算法将用户的潜在兴趣点填充至用户-兴趣点矩阵中,可以有效地缓解数据稀疏性的影响;(2)该算法可保护用户家庭信息;(3)在推荐模型中纳入类别信息的影响能提高推荐效果.展开更多
文摘随着智能移动设备的发展和普及,空间定位技术不断成熟,基于位置的社交网络(Location-based Social Network,LBSN)得到了广泛应用。大量用户在LBSN签到,以及针对签到进行的评论不仅记录了用户的时空行为轨迹,也为研究用户行为模式和特征偏好提供了巨大的机会。提出一种基于LBSN签到数据的商业店铺选址推荐系统,首先分析用户在LBSN上的签到时间、签到地点、签到商铺类型3个方面的特征;然后提出4个影响商铺选址的因素:多样性、竞争性、相关性和客流性;最后实现商业选址推荐系统,并根据选址因素生成最优候选。并以此为基础进行相关实验来验证推荐结果,结果符合相关预期。
文摘利用用户生成短文本(User Generated Short Text,UGST)推测用户的细粒度位置对基于位置服务的应用有重要的意义。现有的细粒度位置推测方法较少引入UGST中的语义信息,且未考虑UGST中语义实体的权重,因此性能较低。针对这些问题,提出了一种基于位置社交网络(Location-based Social Network,LBSN)的UGST细粒度位置推测方法。该方法包括如下3个过程:1)使用Foursquare中的UGST构建实体和位置之间的关联模型,以解决位置标记稀疏问题;2)判断待推测位置的UGST中是否含有位置信息,过滤不包含任何位置语义信息的UGST,以消除噪声短文本的干扰;3)根据UGST内容推测可能的候选位置,并对每个候选位置进行排名,选择排名最靠前的位置作为推测位置。实验结果验证了所提方法的有效性。
文摘兴趣点(Point-Of-Interest,POI)推荐是基于位置的社交网络中(Location-Based Social Networks,LBSN)一种重要的个性化推荐功能.本文提出基于预测的兴趣点推荐算法.该算法根据LBSN中用户历史POI数据分布学习用户出行行为,利用变阶的马尔科夫算法根据当前位置预测用户未来到达POI的语义信息,最终推荐时考虑用户签到次数的差异为用户推荐N个具有高兴趣度的POI.实验结果表明:本文提出的算法在准确率和召回率上均高于两个对比算法,说明该算法提高了兴趣点推荐效果,并可以有效的推荐给用户下一个访问的兴趣点.
文摘近年来,异质网络中的社区发现逐渐成为人们关注的研究热点,然而现有大多数非重叠或重叠的社区发现方法都局限于考虑单一类型的网络结构,而无法适用于包含多模实体及其多维关系的异质网络,基于位置的社交网络(location based social network,LBSN)作为最近兴起的一种新型异质网络,如何有效发现其含有多维关系的复杂社区结构对现有研究来说是一个挑战性的难题.为此,提出了一种融合用户与位置实体及其多维关系的社区发现方法MRNMF(multi-relational nonnegative matrix factorization),该方法通过建立基于非负矩阵分解的联合聚类目标函数,并考虑融入用户社交关系、用户位置签到关系以及兴趣点特征等多维度的影响因素,能同时获得紧密关联的用户模糊社区与兴趣点聚簇结构,以有效缓解推荐中的数据稀疏问题.在2种真实LBSN数据集上的实验结果表明,所提出的MRNMF方法同时在兴趣点与朋友这双重推荐上比其他传统方法具有更优越的推荐性能.
文摘兴趣点(POI,point of interest)推荐是位置社交网络(LBSN,location-based social network)重要的个性化服务,广泛用于热门景点推荐和旅游线路规划等。传统的基于协同过滤的推荐算法根据用户相似性和位置相似性进行推荐,未考虑推荐用户与目标用户间的信任关系,而信任关系有助于提高推荐系统的准确性、顽健性和用户满意度。首先分析了信任与不信任关系的传播特征,然后给出了信任度的表示和计算方法,最后提出了融合用户相似性、地理位置相似性和信任关系的混合推荐模型。实验结果表明,与传统协同过滤推荐方法相比,融合信任关系的混合推荐方法显著提高了推荐结果的准确性和用户满意度。
文摘近年来,以微博、微信朋友圈、Foursquare、Gowalla、Facebook Place等基于位置的社交网络(Location Based Social Network,LBSN)得到迅速发展,庞大的用户群体每天都会通过这些服务产生大量的签到数据,这些异构的网络数据为研究用户的行为特征及潜在特征提供巨大的机遇与挑战。然而现有研究少有对LBSN签到数据进行具体描述与分析,以服务于兴趣点推荐为最终目的,利用Foursquare、Gowalla数据集从用户签到轨迹、用户签到频次、用户签到位置3个方面对用户签到数据进行分析、可视化,探索了用户签到数据中存在的空间特征及个性化行为。
文摘随着GPS设备(如智能手机、GPS导航仪、GPS记录仪等)的广泛应用,其产生的位置信息也越来越多。基于位置的社交网络(Location-Based Social Networks,LBSNs)推荐系统受到了更多的关注。旅游行程推荐是LBSNs中非常热门的研究课题之一,但是现有研究主要侧重向单个用户推荐旅游行程,缺乏向群体推荐行程的工作。因此提出了一种LBSNs中的群体行程推荐方法。该方法首先根据用户的签到记录,使用K-means和谱聚类方法挖掘用户群体及其偏好;然后综合考虑群体对行程的时间和价格的约束,设计了行程推荐算法向群体用户推荐符合其偏好的旅游行程;最后,使用新浪微博用户的真实签到记录进行实验分析,结果表明所提出的群体行程推荐方法具有良好效果。
文摘针对基于位置的社交网络(Location-Based Social Network, LBSN)中用户签到数据的高稀疏性问题及用户隐私问题,提出了一种混合推荐模型(SoGeoCat).首先,通过用户潜在兴趣点数据模型,学习用户的潜在兴趣点;其次,将用户的潜在兴趣点纳入融合类别信息的矩阵分解模型中并优化;最后,根据用户特征矩阵、兴趣点特征矩阵,提出推荐策略.基于Foursquare真实数据集,实验结果表明:(1)相比于其他几个推荐模型,该算法将用户的潜在兴趣点填充至用户-兴趣点矩阵中,可以有效地缓解数据稀疏性的影响;(2)该算法可保护用户家庭信息;(3)在推荐模型中纳入类别信息的影响能提高推荐效果.