期刊文献+
共找到383篇文章
< 1 2 20 >
每页显示 20 50 100
Novel similarity measures for face representation based on local binary pattern
1
作者 祝世虎 封举富 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第2期223-226,共4页
The successful face recognition based on local binary pattern(LBP)relies on the effective extraction of LBP features and the inferring of similarity between the extracted features.In this paper,we focus on the latter ... The successful face recognition based on local binary pattern(LBP)relies on the effective extraction of LBP features and the inferring of similarity between the extracted features.In this paper,we focus on the latter and propose two novel similarity measures for the local matching methods and the holistic matching methods respectively.One is Earth Mover's Distance with Hamming and Lp ground distance(EMD-HammingLp),which is a cross-bin dissimilarity measure for LBP histograms.The other is IMage Hamming Distance(IMHD),which is a dissimilarity measure for the whole LBP images.Experiments on FERET database show that the proposed two similarity measures outperform the state-of-the-art Chi-square similarity measure for extraction of LBP features. 展开更多
关键词 similarity measurement local binary pattern Earth Mover's Distance IMage Euclidean Distance
下载PDF
An Improved Real-Time Face Recognition System at Low Resolution Based on Local Binary Pattern Histogram Algorithm and CLAHE 被引量:2
2
作者 Kamal Chandra Paul Semih Aslan 《Optics and Photonics Journal》 2021年第4期63-78,共16页
This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><... This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">resolution of 15 pixels with pose and emotion and resolution variations. We have designed our datasets named LRD200 and LRD100, which have been used for training and classification. The face detection part uses the Viola-Jones algorithm, and the face recognition part receives the face image from the face detection part to process it using the Local Binary Pattern Histogram (LBPH) algorithm with preprocessing using contrast limited adaptive histogram equalization (CLAHE) and face alignment. The face database in this system can be updated via our custom-built standalone android app and automatic restarting of the training and recognition process with an updated database. Using our proposed algorithm, a real-time face recognition accuracy of 78.40% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 98.05% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px have been achieved using the LRD200 database containing 200 images per person. With 100 images per person in the database (LRD100) the achieved accuracies are 60.60% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 95% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px respectively. A facial deflection of about 30</span></span></span><span><span><span><span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span><span> on either side from the front face showed an average face recognition precision of 72.25%-81.85%. This face recognition system can be employed for law enforcement purposes, where the surveillance camera captures a low-resolution image because of the distance of a person from the camera. It can also be used as a surveillance system in airports, bus stations, etc., to reduce the risk of possible criminal threats.</span></span></span></span> 展开更多
关键词 Face Detection Face Recognition Low Resolution feature Extraction Security System Access Control System Viola-Jones Algorithm LBPH local binary pattern Histogram
下载PDF
Android Malware Detection Using Local Binary Pattern and Principal Component Analysis
3
作者 Qixin Wu Zheng Qin +3 位作者 Jinxin Zhang Hui Yin Guangyi Yang Kuangsheng Hu 《国际计算机前沿大会会议论文集》 2017年第1期63-66,共4页
Nowadays,analysis methods based on big data have been widely used in malicious software detection.Since Android has become the dominator of smartphone operating system market,the number of Android malicious applicatio... Nowadays,analysis methods based on big data have been widely used in malicious software detection.Since Android has become the dominator of smartphone operating system market,the number of Android malicious applications are increasing rapidly as well,which attracts attention of malware attackers and researchers alike.Due to the endless evolution of the malware,it is critical to apply the analysis methods based on machine learning to detect malwares and stop them from leakaging our privacy information.In this paper,we propose a novel Android malware detection method based on binary texture feature recognition by Local Binary Pattern and Principal Component Analysis,which can visualize malware and detect malware accurately.Also,our method analyzes malware binary directly without any decompiler,sandbox or virtual machines,which avoid time and resource consumption caused by decompiler or monitor in this process.Experimentation on 5127 benigns and 5560 malwares shows that we obtain a detection accuracy of 90%. 展开更多
关键词 ANDROID MALWARE detection binary TEXTURE featurE local binary pattern Principal component analysis
下载PDF
Retrieval of High Resolution Satellite Images Using Texture Features 被引量:1
4
作者 Samia Bouteldja Assia Kourgli 《Journal of Electronic Science and Technology》 CAS 2014年第2期211-215,共5页
In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture ... In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture feature and a block based scheme. The query and database images are divided into equally sized blocks, from which LBP histograms are extracted. The block histograms are then compared by using the Chi-square distance. Experimental results show that the LBP representation provides a powerful tool for high resolution satellite images (HRSI) retrieval. 展开更多
关键词 Content-based image retrieval high resolution satellite imagery local binary pattern texture feature extraction
下载PDF
Multi-Level Fusion in Ultrasound for Cancer Detection Based on Uniform LBP Features 被引量:1
5
作者 Diyar Qader Zeebaree Adnan Mohsin Abdulazeez +2 位作者 Dilovan Asaad Zebari Habibollah Haron Haza Nuzly Abdull Hamed 《Computers, Materials & Continua》 SCIE EI 2021年第3期3363-3382,共20页
Collective improvement in the acceptable or desirable accuracy level of breast cancer image-related pattern recognition using various schemes remains challenging.Despite the combination of multiple schemes to achieve ... Collective improvement in the acceptable or desirable accuracy level of breast cancer image-related pattern recognition using various schemes remains challenging.Despite the combination of multiple schemes to achieve superior ultrasound image pattern recognition by reducing the speckle noise,an enhanced technique is not achieved.The purpose of this study is to introduce a features-based fusion scheme based on enhancement uniform-Local Binary Pattern(LBP)and filtered noise reduction.To surmount the above limitations and achieve the aim of the study,a new descriptor that enhances the LBP features based on the new threshold has been proposed.This paper proposes a multi-level fusion scheme for the auto-classification of the static ultrasound images of breast cancer,which was attained in two stages.First,several images were generated from a single image using the pre-processing method.Themedian andWiener filterswere utilized to lessen the speckle noise and enhance the ultrasound image texture.This strategy allowed the extraction of a powerful feature by reducing the overlap between the benign and malignant image classes.Second,the fusion mechanism allowed the production of diverse features from different filtered images.The feasibility of using the LBP-based texture feature to categorize the ultrasound images was demonstrated.The effectiveness of the proposed scheme is tested on 250 ultrasound images comprising 100 and 150 benign and malignant images,respectively.The proposed method achieved very high accuracy(98%),sensitivity(98%),and specificity(99%).As a result,the fusion process that can help achieve a powerful decision based on different features produced from different filtered images improved the results of the new descriptor of LBP features in terms of accuracy,sensitivity,and specificity. 展开更多
关键词 Breast cancer ultrasound image local binary pattern feature extraction noise reduction filters FUSION
下载PDF
An automated detection of glaucoma using histogram features
6
作者 Karthikeyan Sakthivel Rengarajan Narayanan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2015年第1期194-200,共7页
Glaucoma is a chronic and progressive optic neurodegenerative disease leading to vision deterioration and in most cases produce increased pressure within the eye. This is due to the backup of fluid in the eye; it caus... Glaucoma is a chronic and progressive optic neurodegenerative disease leading to vision deterioration and in most cases produce increased pressure within the eye. This is due to the backup of fluid in the eye; it causes damage to the optic nerve. Hence, early detection diagnosis and treatment of an eye help to prevent the loss of vision. In this paper, a novel method is proposed for the early detection of glaucoma using a combination of magnitude and phase features from the digital fundus images. Local binary patterns(LBP) and Daugman’s algorithm are used to perform the feature set extraction.The histogram features are computed for both the magnitude and phase components. The Euclidean distance between the feature vectors are analyzed to predict glaucoma. The performance of the proposed method is compared with the higher order spectra(HOS)features in terms of sensitivity, specificity, classification accuracy and execution time. The proposed system results 95.45% output for sensitivity, specificity and classification. Also, the execution time for the proposed method takes lesser time than the existing method which is based on HOS features. Hence, the proposed system is accurate, reliable and robust than the existing approach to predict the glaucoma features. 展开更多
关键词 Daugman's algorithm Euclidean distance GLAUCOMA higher order spectra histogram features local binary patterns
下载PDF
Product Image Classification Based on Fusion Features
7
作者 杨晓慧 刘静静 杨利军 《Chinese Quarterly Journal of Mathematics》 2015年第3期429-441,共13页
Two key challenges raised by a product images classification system are classification precision and classification time. In some categories, classification precision of the latest techniques, in the product images cl... Two key challenges raised by a product images classification system are classification precision and classification time. In some categories, classification precision of the latest techniques, in the product images classification system, is still low. In this paper, we propose a local texture descriptor termed fan refined local binary pattern, which captures more detailed information by integrating the spatial distribution into the local binary pattern feature. We compare our approach with different methods on a subset of product images on Amazon/e Bay and parts of PI100 and experimental results have demonstrated that our proposed approach is superior to the current existing methods. The highest classification precision is increased by 21% and the average classification time is reduced by 2/3. 展开更多
关键词 product image CLASSIFICATION FAN refined local binary pattern(FRLBP) PYRAMID HISTOGRAM of orientated gradients(PHOG) FUSION features
下载PDF
Enhanced Feature Fusion Segmentation for Tumor Detection Using Intelligent Techniques
8
作者 R.Radha R.Gopalakrishnan 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3113-3127,共15页
In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective... In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective cells precisely during the diagnosis phase helps tofight the greatest exterminator of mankind.Early detec-tion of these defective cells requires an accurate computer-aided diagnostic system(CAD)that supports early treatment and promotes survival rates of patients.An ear-lier version of CAD systems relies greatly on the expertise of radiologist and it con-sumed more time to identify the defective region.The manuscript takes the efficacy of coalescing features like intensity,shape,and texture of the magnetic resonance image(MRI).In the Enhanced Feature Fusion Segmentation based classification method(EEFS)the image is enhanced and segmented to extract the prominent fea-tures.To bring out the desired effect the EEFS method uses Enhanced Local Binary Pattern(EnLBP),Partisan Gray Level Co-occurrence Matrix Histogram of Oriented Gradients(PGLCMHOG),and iGrab cut method to segment image.These prominent features along with deep features are coalesced to provide a single-dimensional fea-ture vector that is effectively used for prediction.The coalesced vector is used with the existing classifiers to compare the results of these classifiers with that of the gen-erated vector.The generated vector provides promising results with commendably less computatio nal time for pre-processing and classification of MR medical images. 展开更多
关键词 Enhanced local binary pattern LEVEL iGrab cut method magnetic resonance image computer aided diagnostic system enhanced feature fusion segmentation enhanced local binary pattern
下载PDF
一种基于LC-BoVW模型的建筑垃圾物料识别算法
9
作者 宋琳 宋琪 +1 位作者 马宗方 赵慧轩 《控制工程》 CSCD 北大核心 2024年第10期1738-1745,共8页
针对建筑垃圾物料的种类多、形貌易混淆等问题,构建了一种基于局部约束的视觉词袋(local constraint-bag of visual words,LC-BoVW)模型的建筑垃圾物料识别算法。首先,对建筑垃圾物料图像分块,分别提取局部颜色特征和局部二值模式特征;... 针对建筑垃圾物料的种类多、形貌易混淆等问题,构建了一种基于局部约束的视觉词袋(local constraint-bag of visual words,LC-BoVW)模型的建筑垃圾物料识别算法。首先,对建筑垃圾物料图像分块,分别提取局部颜色特征和局部二值模式特征;考虑到图像分块特征的局部相似特性,构建LC-BoVW模型分别对目标图像的显著特征进行统计。然后,基于信息融合思想对特征统计量进行融合,形成图像的判别性特征并输入到分类器中进行物料的精确识别。最后,利用自建的5类建筑垃圾物料图像数据集进行实验,实验结果表明,所提算法能够快速有效地实现建筑垃圾物料识别,平均识别准确率可达到97.92%。 展开更多
关键词 建筑垃圾物料识别 特征统计 局部约束 局部二值模式 特征融合
下载PDF
基于多频特征和纹理增强的轻量化图像超分辨率重建
10
作者 刘媛媛 张雨欣 +1 位作者 王晓燕 朱路 《计算机应用研究》 CSCD 北大核心 2024年第8期2515-2520,共6页
现有基于卷积神经网络主要关注图像重构的精度,忽略了过度参数化、特征提取不充分以及计算资源浪费等问题。针对上述问题,提出了一种轻量级多频率特征提取网络(MFEN),设计了轻量化晶格信息交互结构,利用通道分割和多模式卷积组合减少参... 现有基于卷积神经网络主要关注图像重构的精度,忽略了过度参数化、特征提取不充分以及计算资源浪费等问题。针对上述问题,提出了一种轻量级多频率特征提取网络(MFEN),设计了轻量化晶格信息交互结构,利用通道分割和多模式卷积组合减少参数量;通过分离图像的低频、中频以及高频率信息后进行特征异构提取,提高网络的表达能力和特征区分性,使其更注重纹理细节特征的复原,并合理分配计算资源。此外,在网络内部融合局部二值模式(LBP)算法用于增强网络对纹理感知的敏感度,旨在进一步提高网络对细节的提取能力。经验证,该方法在复杂度和性能之间取得了良好的权衡,即实现轻量有效提取图像特征的同时重建出高分辨率图像。在Set5数据集上的2倍放大实验结果最终表明,相比较于基于卷积神经网络的图像超分辨率经典算法(SRCNN)和较新算法(MADNet),所提方法的峰值信噪比(PSNR)分别提升了1.31 dB和0.12 dB,参数量相比MADNet减少了55%。 展开更多
关键词 图像超分辨率重建 卷积神经网络 轻量化 多频率特征提取 局部二值模式算法
下载PDF
基于信息熵的二维局部二值模式静脉识别
11
作者 张云飞 李江美 陈熙 《现代计算机》 2024年第8期9-16,61,共9页
基于现有LBP算法及其变体无法提取图像高维特征的问题,提出一种基于信息熵的二维局部二值模式识别算法。此方法首先利用统一局部二值模式(ULBP)对图像进行低维特征的提取,随后将图像信息熵与统一局部二值模式图谱进行结合获取熵值加权... 基于现有LBP算法及其变体无法提取图像高维特征的问题,提出一种基于信息熵的二维局部二值模式识别算法。此方法首先利用统一局部二值模式(ULBP)对图像进行低维特征的提取,随后将图像信息熵与统一局部二值模式图谱进行结合获取熵值加权的统一局部二值模式图谱(EULBP),并利用滑动窗口实现对局部区域内模式间共现特征信息的统计,以其结果作为图像特征表达。并以直方图交叉距离为基础构建模式分类器,验证其识别性能。实验结果表明,在SDUMLA⁃HMT数据集以及马来西亚理工大学指静脉数据集(FV⁃USM)中,提出的算法能取得99.94%和98.84%的平均识别率。 展开更多
关键词 二维共现局部二值模式 信息熵 旋转不变 方向特征
下载PDF
Hierarchical particle filter tracking algorithm based on multi-feature fusion 被引量:3
12
作者 Minggang Gan Yulong Cheng +1 位作者 Yanan Wang Jie Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期51-62,共12页
A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a ... A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a complicated environment.In this approach,the Harris algorithm is introduced to detect the corner points of the object,and the corner matching algorithm based on singular value decomposition is used to compute the firstorder weights and make particles centralize in the high likelihood area.Then the local binary pattern(LBP) operator is used to build the observation model of the target based on the color and texture features,by which the second-order weights of particles and the accurate location of the target can be obtained.Moreover,a backstepping controller is proposed to complete the whole tracking system.Simulations and experiments are carried out,and the results show that the HPF algorithm with the backstepping controller achieves stable and accurate tracking with good robustness in complex environments. 展开更多
关键词 particle filter corner matching multi-feature fusion local binary patterns(LBP) backstepping.
下载PDF
基于双向椭圆局部二值模式的环境声音分类 被引量:1
13
作者 李军 王子壬 +1 位作者 董红亮 钮焱 《国外电子测量技术》 北大核心 2023年第8期63-70,共8页
针对目前机器学习算法在环境声音分类准确率不高,训练速度慢的问题,提出了基于双向椭圆局部二值模式的环境声音分类方法。设计了双向椭圆局部二进制模式的音频信号特征提取方法,采用3×5信号邻域增加时长影响,并使用邻域左右两列整... 针对目前机器学习算法在环境声音分类准确率不高,训练速度慢的问题,提出了基于双向椭圆局部二值模式的环境声音分类方法。设计了双向椭圆局部二进制模式的音频信号特征提取方法,采用3×5信号邻域增加时长影响,并使用邻域左右两列整体平均值分别代替椭圆左右顶点像素,减少噪音干扰,提高对噪音的鲁棒性,使用整个邻域的平均值代替中心像素,并采用双向局部特征均衡顺序权重,在上述特征基础上增加VAR算子,反应局部特征差异强度,之后将这些特征与梅尔频率倒谱系数(MFCC)、伽玛频率倒谱系数(GFCC)和色度特征(Chromagram)融合。采用经典机器学习算法,如支持向量机(SVM)、随机森林(RF)和k近邻(kNN),结合融合特征,在ESC-10和ESC-50数据集上进行评估,两种数据集的分类准确度分别达到了90.9%和66.7%。 展开更多
关键词 环境声音分类 局部二进制模式 特征融合
下载PDF
基于非线性扩散和多特征融合的提花针织物疵点检测
14
作者 史伟民 简强 +2 位作者 李建强 汝欣 彭来湖 《纺织学报》 EI CAS CSCD 北大核心 2023年第7期86-94,共9页
为解决提花针织物的复杂纹理在疵点检测过程中易造成检测干扰和疵点误判的问题,提出一种基于非线性扩散和多特征融合的疵点检测方法。采用改进PM模型对提花针织物的花纹和强纹理边缘进行抑制,首先利用梯度差异将疵点图像分为纹理区域及... 为解决提花针织物的复杂纹理在疵点检测过程中易造成检测干扰和疵点误判的问题,提出一种基于非线性扩散和多特征融合的疵点检测方法。采用改进PM模型对提花针织物的花纹和强纹理边缘进行抑制,首先利用梯度差异将疵点图像分为纹理区域及疵点区域,然后结合各区域特点选择对应的扩散方程,依据梯度矩阵计算概率子集、相关准则来确定梯度阈值,实现分区域扩散。根据提花针织物的纹理分布特性,提取改进局部二值算法(LBP)、局部熵、局部相关性等表征参数,然后进行去邻域归一化和多特征融合进一步突出疵点区域,最后利用区域生长法定位分割出疵点形态。实验验证了本文预处理方法及疵点检测方法的有效性,通过与其它预处理算法和疵点检测算法进行对比,结果表明本文算法的检测效果最好,对正常织物图像的误检率为3.3%,对含疵点织物图像检测的准确率为98.6%。 展开更多
关键词 提花针织物 PM模型 扩散方程 梯度阈值 改进局部二值算法 去邻域归一化 多特征融合
下载PDF
冷轧带钢表面相似线性缺陷检测 被引量:5
15
作者 刘圆圆 卜明龙 +1 位作者 徐国庆 郝惠敏 《机械设计与制造》 北大核心 2023年第1期120-123,共4页
针对现有冷轧带钢表面的相似线状缺陷检测精度与识别率差的问题,提出一种局部二制模式LBP直方图特征与支持向量机SVM相结合的检测算法。通过对采集的大量划伤与夹杂的带钢表面缺陷图进行预处理,获得感兴趣区域,再进一步利用LBP等价模式... 针对现有冷轧带钢表面的相似线状缺陷检测精度与识别率差的问题,提出一种局部二制模式LBP直方图特征与支持向量机SVM相结合的检测算法。通过对采集的大量划伤与夹杂的带钢表面缺陷图进行预处理,获得感兴趣区域,再进一步利用LBP等价模式获得目标区域的LBP直方图信息,结果显示可以很好地分辨缺陷与非缺陷,并描述的各种缺陷具有可分辨性。采用核函数为径向基函数核的SVM分类器训练识别,结果表明:该方法对划伤和夹杂的缺陷检测准确率达98%。 展开更多
关键词 冷轧带钢 表面相似缺陷 局部二制模式 支持向量机 缺陷检测
下载PDF
基于多特征融合的表情识别算法 被引量:2
16
作者 赖东升 冯开平 罗立宏 《广东工业大学学报》 CAS 2023年第3期10-16,共7页
针对轻量级面部表情识别算法泛化能力的不足,提出了一种结合多特征融合和注意力机制的表情识别方法。使用局部二值模式(Local Binary Pattern,LBP)算子减少面部图像中无关信息的干扰,双分支神经网络提取原始人脸图像和LBP图像的特征,融... 针对轻量级面部表情识别算法泛化能力的不足,提出了一种结合多特征融合和注意力机制的表情识别方法。使用局部二值模式(Local Binary Pattern,LBP)算子减少面部图像中无关信息的干扰,双分支神经网络提取原始人脸图像和LBP图像的特征,融合两个网络提取的中高层特征,并通过注意力机制加强重要特征,在保持较少参数量的同时生成大量的有效特征信息提高算法的识别效果。实验结果表明,该方法在Fer2013和CK+数据集上的识别率分别为70.21%和95.59%,有效地提高了轻量级表情识别算法的性能。 展开更多
关键词 人脸表情识别 轻量级网络 局部二值模式 多特征融合 注意力机制
下载PDF
结合改进LBP和SRC的高光谱图像分类研究 被引量:1
17
作者 龚渝 赵圣璞 +1 位作者 徐俊洁 赵慧敏 《计算机工程与应用》 CSCD 北大核心 2023年第2期253-260,共8页
针对传统局部二值模型(local binary pattern,LBP)提取高光谱图像纹理特征信息量庞大的难题,提出一种基于对称旋转不变等价局部二值模型(symmetrical rotation invariant uniform LBP,SRIULBP)的高光谱图像特征提取方法,以缩减特征维度... 针对传统局部二值模型(local binary pattern,LBP)提取高光谱图像纹理特征信息量庞大的难题,提出一种基于对称旋转不变等价局部二值模型(symmetrical rotation invariant uniform LBP,SRIULBP)的高光谱图像特征提取方法,以缩减特征维度;针对稀疏表示分类(sparse representation classification,SRC)模型中稀疏字典冗余的缺陷,采用近邻思想,提出最近邻稀疏表示(nearest neighbor SRC,NNSRC)分类方法,实现高光谱图像的高效、高准确度分类。数据实验结合表明,SRIULBP能快速提取图像特征,提出的分类方法不仅在分类精度上优于其他稀疏表示分类算法,并且具有更强的时效性与泛化能力。 展开更多
关键词 高光谱图像分类 改进局部二值模型 特征提取 最近邻稀疏表示
下载PDF
改进加权投票的PCA-Net多特征融合SSFR
18
作者 赵淑欢 葛佳琦 +1 位作者 梁晓林 刘帅奇 《计算机仿真》 北大核心 2023年第4期223-230,共8页
单样本人脸识别是人脸识别在实际应用中面临的挑战性问题之一,虽然深度学习在人脸识别方面取得突破性进展但其性能依赖海量标注性数据,故其在单样本上性能有限。而传统浅层特征对有标注的数据量需求不高,但因单样本数据缺少类内变化其... 单样本人脸识别是人脸识别在实际应用中面临的挑战性问题之一,虽然深度学习在人脸识别方面取得突破性进展但其性能依赖海量标注性数据,故其在单样本上性能有限。而传统浅层特征对有标注的数据量需求不高,但因单样本数据缺少类内变化其性能有限,提出一种改进加权投票的PCA-Net多特征融合算法。在数据集方面,利用LU分解生成虚拟样本扩展数据集;根据PCA-Net特征下样本的相关性细化数据集,实现对数据集初步特征提取和筛选;在细化数据集上提取多LBP特征并与PCA-Net特征进行加权投票。在AR、Extended Yale B、CMU-PIE三个数据库上的实验结果表明,所提方法提高了单样本人脸识别性能。 展开更多
关键词 单样本人脸识别 局部二值模式 虚拟样本 特征融合 加权投票
下载PDF
基于LBP和神经网络的织物疵点分类
19
作者 孙红蕊 周星亚 +2 位作者 原义豪 木也塞尔·努热合买提 夏克尔·赛塔尔 《服饰导刊》 2023年第3期110-120,共11页
织物疵点在销售中严重影响着产品的价格与品质,传统的织物疵点检测主要依靠人工检测,这种检测方式如今无法满足机器化时代下的高速度、高精度、高质量的要求。针对织物疵点检测难度大,效率低的问题,文章采用局部二值模式(LBP)和神经网... 织物疵点在销售中严重影响着产品的价格与品质,传统的织物疵点检测主要依靠人工检测,这种检测方式如今无法满足机器化时代下的高速度、高精度、高质量的要求。针对织物疵点检测难度大,效率低的问题,文章采用局部二值模式(LBP)和神经网络对织物疵点分类。首先,采用局部二值模式(LBP)对织物疵点纹理特征进行提取;其次,将特征值进行归一化处理并且将获得的特征值如能量、方差、熵等送入到已经训练好的BP神经网络中;最后,通过BP神经网络将前面送入的织物疵点特征值进行织物疵点先识别再分类;研究认为:基于局部二值模式和神经网络的织物疵点检测方法是一种可行的方法。该方法的平均准确率达到80%以上,平均召回率达到80%以上,分类的平均正确率达到85%以上。 展开更多
关键词 织物疵点分类 神经网络 局部二值化 特征提取
下载PDF
基于机器视觉的钢丝绳表面缺陷检测 被引量:4
20
作者 姜泓宇 董增寿 贺之靖 《太原科技大学学报》 2023年第5期434-439,446,共7页
针对钢丝绳表面缺陷检测困难、精度低、表面特征利用不充分、识别分类器缺乏优化的问题,提出一种基于图像特征融合和改进鲸鱼算法(IWOA)优化支持向量机(SVM)的钢丝绳表面缺陷检测方法。该方法包括特征提取和缺陷类型识别两个部分。特征... 针对钢丝绳表面缺陷检测困难、精度低、表面特征利用不充分、识别分类器缺乏优化的问题,提出一种基于图像特征融合和改进鲸鱼算法(IWOA)优化支持向量机(SVM)的钢丝绳表面缺陷检测方法。该方法包括特征提取和缺陷类型识别两个部分。特征提取阶段,使用中心对称局部二值模式(CS-LBP)和梯度方向直方图(HOG)提取不同缺陷的钢丝绳表面纹理和梯度特征,并将两特征串联融合,实现特征互补。缺陷识别阶段,首先通过改进WOA控制因子和引入惯性权值提高WOA的提的搜索能力、避免陷入局部最优,利用改进WOA对SVM参数优化,提高SVM的泛化能力并对不同缺陷钢丝绳识别分类。实验表明,该方法能有效识别出不同缺陷的钢丝绳,且稳定性较高。 展开更多
关键词 钢丝绳 中心对称局部二值 特征融合 鲸鱼优化算法 支持向量机
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部