Abstract A 60-day feeding experiment was conducted to investigate the influence of dietary omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) on growth, nutritional composition and immune function of marin...Abstract A 60-day feeding experiment was conducted to investigate the influence of dietary omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) on growth, nutritional composition and immune function of marine fish Sebastiscus marmoratus. Five diets containing 3.6, 10.2, 18.2, 26.5, or 37.0 g/kg n-3 LC-PUFA were prepared. The results reveal significant influences of dietary n-3 LC-PUFA on the final weight, weight gain, specific growth rate, feed conversion ratio, and condition factor. As dietary n-3 LC- PUFA increased, weight gain and specific growth rate increased and were significantly higher in groups fed 18.2, 26.5 and 37.0 g/kgthan in groups fed 3.6 and 10.2 g/kg (P〈0.05); there was no significant difference between groups fed 18.2, 26.5, or 37.0 g/kg (P〉0.05). With increasing dietary n-3 LC-PUFA, eicosapentaenoic acid and docosahexenoic acid content in muscle and liver increased significantly, immunoglobulin class M content gradually increased from 9.1 to 14.8 Ixg/L, and lysozyme activity content increased from 1 355 to 2 268 U/mL. Broken line model analysis according to weight gain indicated that a dietary n-3 LC-PUFA level of 18.2 g/kg is essential for normal growth at a fat level of 125 g/kg. Therefore, appropriate dietary n-3 LC-PUFA not only promote growth and improve the n-3 LC-PUFA content, but also enhance immune function in S. marmoratus.展开更多
Long-chain omega-3 polyunsaturated fatty acids(LC-PUFAs),known for having many health benefits,are usually present in three forms:triglycerides(TG),ethyl esters(EE),and phospholipid(PL).In this study,the effects of th...Long-chain omega-3 polyunsaturated fatty acids(LC-PUFAs),known for having many health benefits,are usually present in three forms:triglycerides(TG),ethyl esters(EE),and phospholipid(PL).In this study,the effects of these three LC-PUFAs forms(fish oil for TG and EE,krill oil for PL)on the obese mice were compared,and the proteomic changes that focused on lipid metabolism were evaluated via label-free quantitative proteomics analysis.Compared with the model group,all three of the LC-PUFA form supplementations(labeled as the FO-TG group,FO-EE group and KO-PL groups)could significantly reduce body weight gain(P<0.01).Low-density lipoprotein cholesterol levels were significantly decreased,whereas high-density lipoprotein cholesterol levels were significantly increased in the FO-TG group and FO-EE group(P<0.01),and especially in the PL group(P<0.001).Furthermore,proteomics analysis results suggested that some differentially expressed genes involved in the fatty acid degradation and oxidation pathways had a higher expression fold in the KO-PL group than in the FO-TG or FO-EE groups.Our results showed that dietary LC-PUFAs can reduce fat deposition and inhibit lipogenesis in the liver by upregulating the expression of proteins that are involved in the fatty acid degradation and oxidation pathways.Additionally,KO-PL elicits stronger effects than FO-TG or FO-EE.展开更多
Prior research has shown adult diets rich in omega-3 long-chain polyunsaturated fatty acids (omega-3 LC-PUFAs) can improve adult metabolic health. Previous studies have also shown maternal overnutrition during pregnan...Prior research has shown adult diets rich in omega-3 long-chain polyunsaturated fatty acids (omega-3 LC-PUFAs) can improve adult metabolic health. Previous studies have also shown maternal overnutrition during pregnancy/lactation adversely affects metabolic functioning in adult offspring. The purpose of the current study was to investigate the interaction of these two metabolism regulating factors by assessing the effectiveness of a postweaning diet rich in omega-3 long chain-polyunsaturated fatty acids (omega-3 LC-PUFAs) to improve metabolic function in adult offspring whose mothers were fed a high-saturated fat “Western” diet during pregnancy/lactation. We compared metabolic function between offspring of three prenatal-lactation/postweaning diet lines of Sprague-Dawley rats: 1) offspring of mothers fed a high-saturated fat “Western” diet during pregnancy-lactation, then weaned to a high omega-3 LC-PUFA diet (Western/PUFA);2) offspring of mothers fed a control diet during pregnancy-lactation, then weaned to a high omega-3 LC-PUFA diet (Control/PUFA);and 3) offspring of mothers fed a Western diet during pregnancylactation, and postweaning (Western/Western). Fasting plasma insulin, triglycerides, and insulin resistance (HOMA-IR) of Western/PUFA animals were intermediate to those of Western/Western and Control/PUFA offspring, although these differences did not reach statistical significance. This suggests the metabolic benefits of an omega-3 LC-PUFA-rich diet are insufficient to overcome the deleterious effects of a high-saturated fat prenatal-lactation diet.展开更多
Previous research has shown that prenatal diets rich in specific nutrients (e.g. taurine, omega-3 fatty acids) may provide protective cardiometabolic effects for adult offspring. The purpose of the current study was t...Previous research has shown that prenatal diets rich in specific nutrients (e.g. taurine, omega-3 fatty acids) may provide protective cardiometabolic effects for adult offspring. The purpose of the current study was to investigate the potential of a prenatal-lactation diet rich in omega-3 long-chain polyunsaturated fatty acids (omega-3 LC PUFAs) to improve metabolic function in offspring fed a high saturated fat “Western” diet postweaning. We compared growth and metabolic biomarkers of three groups of Sprague Dawley rat offspring all weaned to a high saturated fat “Western” (Western) diet, but whose mothers were fed one of three different diets during pregnancy-lactation: 1) omega-3 “PUFA”-rich (PUFA/Western);2) control (Control/Western);and 3) high saturated fat “Western” (Western/Western). PUFA/Western offspring had significantly lower fasting insulin (P < 0.01) and HOMA-IR (P < 0.01), and lower mean plasma triglycerides than Western/ Western animals. Additionally, mean HOMA-IR, fasting plasma insulin, and triglycerides were 19%, 10% and 14% lower, respectively, than those of Control/Western animals, although these differences were not statistically significant. Western/Western adult offspring had the highest fasting plasma insulin, triglycerides, and insulin-resistance (HOMA-IR) of the three groups. Our results indicated that a maternal omega-3 PUFA-rich diet during pregnancy-lactation may provide modest protective metabolic effects for adult offspring, even when consuming a high energy and saturated fat diet.展开更多
基金Supported by the National Key Technologies R&D Program of China during the 12th Five-Year Plan Period(No.2011BAD13B01)the National Natural Science Foundation of China(No.31202009)the Central Nonprofit Basic Scientific Research Project for the Scientific Research Institutes of China(No.East-2011M09)
文摘Abstract A 60-day feeding experiment was conducted to investigate the influence of dietary omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) on growth, nutritional composition and immune function of marine fish Sebastiscus marmoratus. Five diets containing 3.6, 10.2, 18.2, 26.5, or 37.0 g/kg n-3 LC-PUFA were prepared. The results reveal significant influences of dietary n-3 LC-PUFA on the final weight, weight gain, specific growth rate, feed conversion ratio, and condition factor. As dietary n-3 LC- PUFA increased, weight gain and specific growth rate increased and were significantly higher in groups fed 18.2, 26.5 and 37.0 g/kgthan in groups fed 3.6 and 10.2 g/kg (P〈0.05); there was no significant difference between groups fed 18.2, 26.5, or 37.0 g/kg (P〉0.05). With increasing dietary n-3 LC-PUFA, eicosapentaenoic acid and docosahexenoic acid content in muscle and liver increased significantly, immunoglobulin class M content gradually increased from 9.1 to 14.8 Ixg/L, and lysozyme activity content increased from 1 355 to 2 268 U/mL. Broken line model analysis according to weight gain indicated that a dietary n-3 LC-PUFA level of 18.2 g/kg is essential for normal growth at a fat level of 125 g/kg. Therefore, appropriate dietary n-3 LC-PUFA not only promote growth and improve the n-3 LC-PUFA content, but also enhance immune function in S. marmoratus.
基金supported by the Regional Demonstration Project of Marine Economic Innovation and Development(2013 and 2016)National Natural Science Foundation of China(31800117)the K.C.Wong Magna Fund offered by the Ningbo University。
文摘Long-chain omega-3 polyunsaturated fatty acids(LC-PUFAs),known for having many health benefits,are usually present in three forms:triglycerides(TG),ethyl esters(EE),and phospholipid(PL).In this study,the effects of these three LC-PUFAs forms(fish oil for TG and EE,krill oil for PL)on the obese mice were compared,and the proteomic changes that focused on lipid metabolism were evaluated via label-free quantitative proteomics analysis.Compared with the model group,all three of the LC-PUFA form supplementations(labeled as the FO-TG group,FO-EE group and KO-PL groups)could significantly reduce body weight gain(P<0.01).Low-density lipoprotein cholesterol levels were significantly decreased,whereas high-density lipoprotein cholesterol levels were significantly increased in the FO-TG group and FO-EE group(P<0.01),and especially in the PL group(P<0.001).Furthermore,proteomics analysis results suggested that some differentially expressed genes involved in the fatty acid degradation and oxidation pathways had a higher expression fold in the KO-PL group than in the FO-TG or FO-EE groups.Our results showed that dietary LC-PUFAs can reduce fat deposition and inhibit lipogenesis in the liver by upregulating the expression of proteins that are involved in the fatty acid degradation and oxidation pathways.Additionally,KO-PL elicits stronger effects than FO-TG or FO-EE.
文摘Prior research has shown adult diets rich in omega-3 long-chain polyunsaturated fatty acids (omega-3 LC-PUFAs) can improve adult metabolic health. Previous studies have also shown maternal overnutrition during pregnancy/lactation adversely affects metabolic functioning in adult offspring. The purpose of the current study was to investigate the interaction of these two metabolism regulating factors by assessing the effectiveness of a postweaning diet rich in omega-3 long chain-polyunsaturated fatty acids (omega-3 LC-PUFAs) to improve metabolic function in adult offspring whose mothers were fed a high-saturated fat “Western” diet during pregnancy/lactation. We compared metabolic function between offspring of three prenatal-lactation/postweaning diet lines of Sprague-Dawley rats: 1) offspring of mothers fed a high-saturated fat “Western” diet during pregnancy-lactation, then weaned to a high omega-3 LC-PUFA diet (Western/PUFA);2) offspring of mothers fed a control diet during pregnancy-lactation, then weaned to a high omega-3 LC-PUFA diet (Control/PUFA);and 3) offspring of mothers fed a Western diet during pregnancylactation, and postweaning (Western/Western). Fasting plasma insulin, triglycerides, and insulin resistance (HOMA-IR) of Western/PUFA animals were intermediate to those of Western/Western and Control/PUFA offspring, although these differences did not reach statistical significance. This suggests the metabolic benefits of an omega-3 LC-PUFA-rich diet are insufficient to overcome the deleterious effects of a high-saturated fat prenatal-lactation diet.
文摘Previous research has shown that prenatal diets rich in specific nutrients (e.g. taurine, omega-3 fatty acids) may provide protective cardiometabolic effects for adult offspring. The purpose of the current study was to investigate the potential of a prenatal-lactation diet rich in omega-3 long-chain polyunsaturated fatty acids (omega-3 LC PUFAs) to improve metabolic function in offspring fed a high saturated fat “Western” diet postweaning. We compared growth and metabolic biomarkers of three groups of Sprague Dawley rat offspring all weaned to a high saturated fat “Western” (Western) diet, but whose mothers were fed one of three different diets during pregnancy-lactation: 1) omega-3 “PUFA”-rich (PUFA/Western);2) control (Control/Western);and 3) high saturated fat “Western” (Western/Western). PUFA/Western offspring had significantly lower fasting insulin (P < 0.01) and HOMA-IR (P < 0.01), and lower mean plasma triglycerides than Western/ Western animals. Additionally, mean HOMA-IR, fasting plasma insulin, and triglycerides were 19%, 10% and 14% lower, respectively, than those of Control/Western animals, although these differences were not statistically significant. Western/Western adult offspring had the highest fasting plasma insulin, triglycerides, and insulin-resistance (HOMA-IR) of the three groups. Our results indicated that a maternal omega-3 PUFA-rich diet during pregnancy-lactation may provide modest protective metabolic effects for adult offspring, even when consuming a high energy and saturated fat diet.