Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonun...Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.展开更多
The use of catalysts has significantly enhanced the yield and quality of in-situ pyrolysis products.However,there is a lack of understanding regarding pyrolysis approaches that utilize several low-cost natural catalys...The use of catalysts has significantly enhanced the yield and quality of in-situ pyrolysis products.However,there is a lack of understanding regarding pyrolysis approaches that utilize several low-cost natural catalysts(LCC)and their placement within the reactor.Therefore,this study aims to examine the effects of various LCC on the insitu pyrolysis of spirulina platensis microalgae(SPM)and investigate the impact of different types of catalysts.We employed LCCsuch as zeolite,dolomite,kaolin,and activated carbon,with both layered and uniformlymixed LCCSPM placements.Each experiment was conducted at a constant temperature of 500℃for 60 min.The resulting pyrolytic liquids(bio-oil)and syngas were analyzed using a Gas Chromatography Mass Spectrometry(GC-MS)analyzer to determine the distribution of hydrocarbon compounds.The experimental results indicated that the presence of catalysts significantly influenced the mass yield productivity of liquid fuels and syngas.Activated carbon and zeolite were preferred among the four catalysts for producing liquid fuels(22.4 and 18.6 wt%)when layered and uniformly mixed,respectively.Kaolin with a layered mixture with SPM was more suitable for the production of light fractions(C_(5)–C_(12)),achieving approximately 95.7%peak area,while zeolite with a uniform mixture produced the highest light fraction at about 86.3%peak area.All catalysts except kaolin significantly increased the aromatic compounds in the liquid fuels.Although the amount of oxygenated hydrocarbons in the bio-oil remained relatively high,the final hydrocarbon composition was highly comparable to conventional fuels such as gasoline-88,which has a C_(5)–C_(12)hydrocarbon distribution of approximately 88.1%peak area.Regarding the syngas products,all catalysts except activated carbon successfully converted nitromethane compounds into tetranitromethane hydrocarbons,with activated carbon predominantly yielding nitromethane compounds.展开更多
基金National Natural Science Foundation of China under Grant Nos.51921006 and 51725801Fundamental Research Funds for the Central Universities under Grant No.FRFCU5710093320Heilongjiang Touyan Innovation Team Program。
文摘Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.
文摘The use of catalysts has significantly enhanced the yield and quality of in-situ pyrolysis products.However,there is a lack of understanding regarding pyrolysis approaches that utilize several low-cost natural catalysts(LCC)and their placement within the reactor.Therefore,this study aims to examine the effects of various LCC on the insitu pyrolysis of spirulina platensis microalgae(SPM)and investigate the impact of different types of catalysts.We employed LCCsuch as zeolite,dolomite,kaolin,and activated carbon,with both layered and uniformlymixed LCCSPM placements.Each experiment was conducted at a constant temperature of 500℃for 60 min.The resulting pyrolytic liquids(bio-oil)and syngas were analyzed using a Gas Chromatography Mass Spectrometry(GC-MS)analyzer to determine the distribution of hydrocarbon compounds.The experimental results indicated that the presence of catalysts significantly influenced the mass yield productivity of liquid fuels and syngas.Activated carbon and zeolite were preferred among the four catalysts for producing liquid fuels(22.4 and 18.6 wt%)when layered and uniformly mixed,respectively.Kaolin with a layered mixture with SPM was more suitable for the production of light fractions(C_(5)–C_(12)),achieving approximately 95.7%peak area,while zeolite with a uniform mixture produced the highest light fraction at about 86.3%peak area.All catalysts except kaolin significantly increased the aromatic compounds in the liquid fuels.Although the amount of oxygenated hydrocarbons in the bio-oil remained relatively high,the final hydrocarbon composition was highly comparable to conventional fuels such as gasoline-88,which has a C_(5)–C_(12)hydrocarbon distribution of approximately 88.1%peak area.Regarding the syngas products,all catalysts except activated carbon successfully converted nitromethane compounds into tetranitromethane hydrocarbons,with activated carbon predominantly yielding nitromethane compounds.