Although the 5G wireless network has made significant advances,it is not enough to accommodate the rapidly rising requirement for broader bandwidth in post-5G and 6G eras.As a result,emerging technologies in higher fr...Although the 5G wireless network has made significant advances,it is not enough to accommodate the rapidly rising requirement for broader bandwidth in post-5G and 6G eras.As a result,emerging technologies in higher frequencies including visible light communication(VLC),are becoming a hot topic.In particular,LED-based VLC is foreseen as a key enabler for achieving data rates at the Tb/s level in indoor scenarios using multi-color LED arrays with wavelength division multiplexing(WDM)technology.This paper proposes an optimized multi-color LED array chip for high-speed VLC systems.Its long-wavelength GaN-based LED units are remarkably enhanced by V-pit structure in their efficiency,especially in the“yellow gap”region,and it achieves significant improvement in data rate compared with earlier research.This work investigates the V-pit structure and tries to provide insight by introducing a new equivalent circuit model,which provides an explanation of the simulation and experiment results.In the final test using a laboratory communication system,the data rates of eight channels from short to long wavelength are 3.91 Gb/s,3.77 Gb/s,3.67 Gb/s,4.40 Gb/s,3.78 Gb/s,3.18 Gb/s,4.31 Gb/s,and 4.35 Gb/s(31.38 Gb/s in total),with advanced digital signal processing(DSP)techniques including digital equalization technique and bit-power loading discrete multitone(DMT)modulation format.展开更多
The high power light emitting diode (LED) array integrated with the microchannel heat sink is designed in this paper, and then optimal analysis and simulation have been carried out. According to the theory of heat t...The high power light emitting diode (LED) array integrated with the microchannel heat sink is designed in this paper, and then optimal analysis and simulation have been carried out. According to the theory of heat transfer and fluid mechanics, the calculation of the thermal resistance for the microchannel heat sink is obtained, and the thermal resis- tance is minimized. Finally the simulation with FLUENT software is developed to verify the theoretical analysis. Established analysis and simulation show that the width of the cooling channel is 0.1 mm, and the cooling water flow rate is 1 m/s. On the other hand, the system acquires the best heat dissipation effect, and the minimum of thermal resis- tance is 0.019 W/℃.展开更多
Illumination with LEDs is of increasing interest in imaging and lithography.In particular,compared to lasers,LEDs are temporally and spatially incoherent,so that speckle effects can be avoided by the application of LE...Illumination with LEDs is of increasing interest in imaging and lithography.In particular,compared to lasers,LEDs are temporally and spatially incoherent,so that speckle effects can be avoided by the application of LEDs.Besides,LED arrays are qualified due to their high optical output power.However,LED arrays have not been widely used for investigating optical effects,e.g.,the Lau effect.In this paper,we propose the application of an LED array for realizing the Lau effect by taking into account the influence of the coherence properties of illumination on the Lau effect.Using spatially incoherent illumination with the LED array or a single LED,triangular distributed Lau fringes can be obtained.We apply the obtained Lau fringes in the optical lithography to produce analog structures.Compared to a single LED,the Lau fringes using the LED array have significantly higher intensities.Hence,the exposure time in the lithography process is largely reduced.展开更多
This paper designs a 3 × 3 light emitting diode (LED) array with a total power of 9 W, presents a thermal analysis of plate fin, in-line and staggered pin fin heat sinks for a high power LED lighting system, an...This paper designs a 3 × 3 light emitting diode (LED) array with a total power of 9 W, presents a thermal analysis of plate fin, in-line and staggered pin fin heat sinks for a high power LED lighting system, and develops a 3D one-fourth finite element (FE) model to predict the system temperature distribution. Three kinds of heat sinks are compared under the same conditions. It is found that LED chip junction temperature is 48.978℃ when the fins of heat sink are aligned alternately.展开更多
基金This research was funded by the National Key Research and Development Program of China(2022YFB2802803)the Natural Science Foundation of China Project(No.61925104,No.62031011,No.62201157,No.62074072).
文摘Although the 5G wireless network has made significant advances,it is not enough to accommodate the rapidly rising requirement for broader bandwidth in post-5G and 6G eras.As a result,emerging technologies in higher frequencies including visible light communication(VLC),are becoming a hot topic.In particular,LED-based VLC is foreseen as a key enabler for achieving data rates at the Tb/s level in indoor scenarios using multi-color LED arrays with wavelength division multiplexing(WDM)technology.This paper proposes an optimized multi-color LED array chip for high-speed VLC systems.Its long-wavelength GaN-based LED units are remarkably enhanced by V-pit structure in their efficiency,especially in the“yellow gap”region,and it achieves significant improvement in data rate compared with earlier research.This work investigates the V-pit structure and tries to provide insight by introducing a new equivalent circuit model,which provides an explanation of the simulation and experiment results.In the final test using a laboratory communication system,the data rates of eight channels from short to long wavelength are 3.91 Gb/s,3.77 Gb/s,3.67 Gb/s,4.40 Gb/s,3.78 Gb/s,3.18 Gb/s,4.31 Gb/s,and 4.35 Gb/s(31.38 Gb/s in total),with advanced digital signal processing(DSP)techniques including digital equalization technique and bit-power loading discrete multitone(DMT)modulation format.
文摘The high power light emitting diode (LED) array integrated with the microchannel heat sink is designed in this paper, and then optimal analysis and simulation have been carried out. According to the theory of heat transfer and fluid mechanics, the calculation of the thermal resistance for the microchannel heat sink is obtained, and the thermal resis- tance is minimized. Finally the simulation with FLUENT software is developed to verify the theoretical analysis. Established analysis and simulation show that the width of the cooling channel is 0.1 mm, and the cooling water flow rate is 1 m/s. On the other hand, the system acquires the best heat dissipation effect, and the minimum of thermal resis- tance is 0.019 W/℃.
基金the support by the Deutsche Forschungsgemeinschaft(DFG)in the framework of Research Training Group“Tip and laser-based 3D-nanofabrication in extended macroscopic working areas”(GRK 2182/1)at the Technische Universitat Ilmenau,Germany.
文摘Illumination with LEDs is of increasing interest in imaging and lithography.In particular,compared to lasers,LEDs are temporally and spatially incoherent,so that speckle effects can be avoided by the application of LEDs.Besides,LED arrays are qualified due to their high optical output power.However,LED arrays have not been widely used for investigating optical effects,e.g.,the Lau effect.In this paper,we propose the application of an LED array for realizing the Lau effect by taking into account the influence of the coherence properties of illumination on the Lau effect.Using spatially incoherent illumination with the LED array or a single LED,triangular distributed Lau fringes can be obtained.We apply the obtained Lau fringes in the optical lithography to produce analog structures.Compared to a single LED,the Lau fringes using the LED array have significantly higher intensities.Hence,the exposure time in the lithography process is largely reduced.
基金Project supported by the National Natural Science Foundation of China(No.60666002)
文摘This paper designs a 3 × 3 light emitting diode (LED) array with a total power of 9 W, presents a thermal analysis of plate fin, in-line and staggered pin fin heat sinks for a high power LED lighting system, and develops a 3D one-fourth finite element (FE) model to predict the system temperature distribution. Three kinds of heat sinks are compared under the same conditions. It is found that LED chip junction temperature is 48.978℃ when the fins of heat sink are aligned alternately.