Several improvements have been made to the conventional segmented linear light-emitting diode (LED) driver topology to enhance the performance and reliability of the system. A compensation technology is proposed to ...Several improvements have been made to the conventional segmented linear light-emitting diode (LED) driver topology to enhance the performance and reliability of the system. A compensation technology is proposed to adaptively adjust the impedance of the sensing circuit to keep the output luminance constant in case of line volt- age variations. Based on the proposed technology, an active over temperature protection technique is presented to constrain the averaged LED current according to the junction temperature to prevent the driving IC from overheating. Otherwise, a pulse width modulation dimming circuitry which is compatible with input logic level ranging from 1.8 to 20 V is proposed. The proposed technologies are implemented in a 1.0μm 5/20/500 V BCD technol- ogy with three high voltage MOSFETs integrated on chip. The experimental results show that within 220± 15% V, 50 Hz AC line-voltage variation, the output luminance is restrained to 4% in total. The output luminance can also be effectively controlled by the PWM dimming circuitry, and a dimming range of 95% is achieved with good linearity.展开更多
This research describes an integrated multi-channel high accuracy current control LED (light emitting diode) driver with low dropout regulator implemented in a 0.35μm TSMC 2P4M CMOS process. With the new trend of b...This research describes an integrated multi-channel high accuracy current control LED (light emitting diode) driver with low dropout regulator implemented in a 0.35μm TSMC 2P4M CMOS process. With the new trend of backlighting applications for mobile electronics and portable devices requiring a smaller size, lower cost, lesser noise and accurate current control LED driver, it came up with the idea of integrating more than one design features within a single chip. The analysis of using a capacitor-less low dropout regulator to power the constant current source has been explored, with the implementation of wide range battery voltage of 3 V to 5 V. Possible load current variations were introduced and verified to output a fixed voltage of 2.8 V. A regulated cascode current mirror structure forms the multi-channel configuration string of LED's; the design ensures a current matching of less than 1% error and achieves a high accuracy current control of less than 1% error, regardless of the LED's forward voltage variation. Moreover, for high end portable device with multimedia applications, dimming frequency can be set to 10 MHz. In addition, a switching output is a better approach for managing LED's contrast and brightness adjustment as well as maximizing power consumption, ensuring longer life for driving string of LEDs.展开更多
A high performance white light emitter diode (LED) driver based on boost converter with novel single-wire serial-pulse digital dimming (SWSP) is proposed. The driver uses external serial programmed pulses and inte...A high performance white light emitter diode (LED) driver based on boost converter with novel single-wire serial-pulse digital dimming (SWSP) is proposed. The driver uses external serial programmed pulses and internal clock to simplify brightness control By embedding a 5-bit digital analog converter (DAC) into the driver, wide dimming range is achieved. Moreover, a new dynamic slope compensation circuit is presented and other key circuits of the driver are optimized to get higher efficiency and fast transition response. A practical circuit is implemented with 0.6 um bipolar complementary-metal-oxide-semiconductor double-diffused-metal-oxide-semiconductor (BCD) technology. The simulation results show that the driver can provide both wide output current from 1.3 mA to 42 mA with 32-level digital dimming and higher efficiency up to 83% while it works at 1 MHz switching frequency with the input voltage variation from 2.7 V to 5.5 V.展开更多
An LED driving circuit in accurate proportional current sampling mode is designed and fabricated based on CSMC 0.5 μm standard CMOS technology. It realizes accurate sensing of sampling current variation with output d...An LED driving circuit in accurate proportional current sampling mode is designed and fabricated based on CSMC 0.5 μm standard CMOS technology. It realizes accurate sensing of sampling current variation with output driving current. A better constant output current characteristic is achieved by using an amplifier to clamp the drain voltage of both the sampling MOSFET and power MOSFET to the same value with feedback control. Small signal equivalent circuit analysis shows that the small signal output resistance in the accurate proportional current sampling mode circuit is much larger than that in a traditional proportional current sampling mode circuit, and circuit stability could be assured. Circuit simulation and chip testing results show that when the LED driving current is 350 mA and the power supply is 6 V with ± 10% variation, the stability of the output constant current of the accurate proportional current sampling mode LED driving IC will show 41% improvement over that of a traditional proportional current sampling mode LED driving IC.展开更多
A high efficiency, high power factor, and linear constant current LED driver based on adaptive seg- mented linear architecture is presented. When the input voltage varied, the proposed LED driver automatically switche...A high efficiency, high power factor, and linear constant current LED driver based on adaptive seg- mented linear architecture is presented. When the input voltage varied, the proposed LED driver automatically switched over LED strings according to the segmented LED voltage drop, which increased the LED lighting time. The efficiency and power factor are improved, while the system design is simplified by this control scheme. Without the usage of electrolytic capacitor and magnetic components, the proposed driver possesses advantages of smaller size, longer lifetime and lower cost over others. The proposed driver is implemented in 0.8 μm 5 V/40 V HVCMOS process, which occupies an active area of 820× 920μm2. The measured results show that the average value of the internal reference voltage is 500 4- 7 mV, with a standard deviation of only 4.629 mV, thus LED current can be set accurately. Under 220 V root mean square 50 Hz utility voltage and the number ratio of the three LED strings being 47 : 17 : 16, the system can realize a high power factor of 0.974 and power conversion efficiency of 93.4%.展开更多
A boost LED driver featuring a high PWM dimming ratio and optimized efficiency is presented. This LED driver, which has a low dropout voltage and is able to drive 3-7 LEDs in series with constant output current and fa...A boost LED driver featuring a high PWM dimming ratio and optimized efficiency is presented. This LED driver, which has a low dropout voltage and is able to drive 3-7 LEDs in series with constant output current and fast PWM dimming, provides an alternative technique for brightness adjustment. A dual-path control scheme with automatic switching and state maintenance is proposed. Meanwhile, a cascode current mirror structure is applied with the output transistor multiplexed as an LED PWM dimming transistor. Implemented in 0.5 #m 25 V BCD process, the measurement results show that a voltage conversion range of 5 V input to 6-24 V output with constant output current is obtained. With automatically switching dual-path control and an optimized current mirror, the response time during PWM dimming is reduced to as low as 240 ns and the efficiency keeps above 89% over a wide PWM dimming ratio @ 250 mA output current.展开更多
A fully integrated LED driver based on a current mode PWM boost DC-DC converter with constant output current is proposed. In order to suppress the inrush of current and the overshoot voltage at the start up state, a s...A fully integrated LED driver based on a current mode PWM boost DC-DC converter with constant output current is proposed. In order to suppress the inrush of current and the overshoot voltage at the start up state, a soft-start circuit is adopted. Additionally, to adjust the LED brightness without color variation over the full dimming range and achieve high efficiency, a PWM dimming circuit is presented. Furthermore, to keep the loop stability of the LED driver, an internal slope compensation network is designed to avoid the sub-harmonic oscillation when the duty cycle exceeds 50%. Finally, a UVLO circuit is adopted to improve the reliability of the LED driver against the input voltage changing. The LED driver has been fabricated with a standard 0.5/xm CMOS process, and only occupies 1.21 × 0.76 mm^2. Experimental results show that the brightness of the LED can be adjusted by an off- chip PWM signal with a wide adjusting range. The inductor current and output current increase smoothly over the whole load range. The chip is in the UVLO condition when the input voltage is below 2.18 V and has achieved about 137 μs typical start-up time.展开更多
A single-stage flyback driving integrated circuit (IC) for light-emitting diodes (LEDs) is proposed. With an average primary-side current estimation and negative feedback networks, the driver operates in the bound...A single-stage flyback driving integrated circuit (IC) for light-emitting diodes (LEDs) is proposed. With an average primary-side current estimation and negative feedback networks, the driver operates in the boundary conduction mode (BCM), while the output current can be derived and regulated precisely. By means of a simple external resistor divider, a compensation voltage is produced on the ISEN pin during the turn-on period of the primary MOSFET to improve the line regulation performance. On the other hand, since the delay time between the time that the secondary diode current reaches zero and the turn-on time of the MOSFET can be automatically adjusted, the MOSFET can always turn on at the valley voltage even if the inductance of the primary winding varies with the output power, resulting in quasi-resonant switching for different primary inductances. The driving IC is fabricated in a Dongbu HiTek's 0.35μm bipolar-CMOS-DMOS process. An 18 W LED driver is finally built and tested. Results show that the driver has an average efficiency larger than 86%, a power factor larger than 0.97, and works under the universal input voltage (85-265 V) with the LED current variation within ±0.5%.展开更多
A digital controller IC for the flyback converter with primary-side feedback is proposed. The controller is used for adapter charger or LED driver applications. To obtain high accuracy for the primary-side feedback, a...A digital controller IC for the flyback converter with primary-side feedback is proposed. The controller is used for adapter charger or LED driver applications. To obtain high accuracy for the primary-side feedback, a digital primary-side sensing technology is adopted, which can auto-track the knee point of the primary auxiliary winding voltage. Furthermore, an internal digital compensator eliminates the need for external loop compensation components while achieving excellent line and load regulation. The controller could output both constant voltage and constant current depending on the load current. Pulse width modulation and pulse frequency modulation are used in constant voltage mode while quasi-resonant control is used in constant current mode. The digital controller is validated by using FPGA.展开更多
基金Project supported by the National Natural Science Foundation of China(No.61106026)
文摘Several improvements have been made to the conventional segmented linear light-emitting diode (LED) driver topology to enhance the performance and reliability of the system. A compensation technology is proposed to adaptively adjust the impedance of the sensing circuit to keep the output luminance constant in case of line volt- age variations. Based on the proposed technology, an active over temperature protection technique is presented to constrain the averaged LED current according to the junction temperature to prevent the driving IC from overheating. Otherwise, a pulse width modulation dimming circuitry which is compatible with input logic level ranging from 1.8 to 20 V is proposed. The proposed technologies are implemented in a 1.0μm 5/20/500 V BCD technol- ogy with three high voltage MOSFETs integrated on chip. The experimental results show that within 220± 15% V, 50 Hz AC line-voltage variation, the output luminance is restrained to 4% in total. The output luminance can also be effectively controlled by the PWM dimming circuitry, and a dimming range of 95% is achieved with good linearity.
文摘This research describes an integrated multi-channel high accuracy current control LED (light emitting diode) driver with low dropout regulator implemented in a 0.35μm TSMC 2P4M CMOS process. With the new trend of backlighting applications for mobile electronics and portable devices requiring a smaller size, lower cost, lesser noise and accurate current control LED driver, it came up with the idea of integrating more than one design features within a single chip. The analysis of using a capacitor-less low dropout regulator to power the constant current source has been explored, with the implementation of wide range battery voltage of 3 V to 5 V. Possible load current variations were introduced and verified to output a fixed voltage of 2.8 V. A regulated cascode current mirror structure forms the multi-channel configuration string of LED's; the design ensures a current matching of less than 1% error and achieves a high accuracy current control of less than 1% error, regardless of the LED's forward voltage variation. Moreover, for high end portable device with multimedia applications, dimming frequency can be set to 10 MHz. In addition, a switching output is a better approach for managing LED's contrast and brightness adjustment as well as maximizing power consumption, ensuring longer life for driving string of LEDs.
基金supported by the National Natural Science Foundation of China (60776027).
文摘A high performance white light emitter diode (LED) driver based on boost converter with novel single-wire serial-pulse digital dimming (SWSP) is proposed. The driver uses external serial programmed pulses and internal clock to simplify brightness control By embedding a 5-bit digital analog converter (DAC) into the driver, wide dimming range is achieved. Moreover, a new dynamic slope compensation circuit is presented and other key circuits of the driver are optimized to get higher efficiency and fast transition response. A practical circuit is implemented with 0.6 um bipolar complementary-metal-oxide-semiconductor double-diffused-metal-oxide-semiconductor (BCD) technology. The simulation results show that the driver can provide both wide output current from 1.3 mA to 42 mA with 32-level digital dimming and higher efficiency up to 83% while it works at 1 MHz switching frequency with the input voltage variation from 2.7 V to 5.5 V.
基金supported by the High Efficacy Energy-Saving Project of Zhejiang Province China(No.2006C11007).
文摘An LED driving circuit in accurate proportional current sampling mode is designed and fabricated based on CSMC 0.5 μm standard CMOS technology. It realizes accurate sensing of sampling current variation with output driving current. A better constant output current characteristic is achieved by using an amplifier to clamp the drain voltage of both the sampling MOSFET and power MOSFET to the same value with feedback control. Small signal equivalent circuit analysis shows that the small signal output resistance in the accurate proportional current sampling mode circuit is much larger than that in a traditional proportional current sampling mode circuit, and circuit stability could be assured. Circuit simulation and chip testing results show that when the LED driving current is 350 mA and the power supply is 6 V with ± 10% variation, the stability of the output constant current of the accurate proportional current sampling mode LED driving IC will show 41% improvement over that of a traditional proportional current sampling mode LED driving IC.
基金supported by the National Natural Science Foundation of China(Nos.61234002,61322405,61306044,61376033)
文摘A high efficiency, high power factor, and linear constant current LED driver based on adaptive seg- mented linear architecture is presented. When the input voltage varied, the proposed LED driver automatically switched over LED strings according to the segmented LED voltage drop, which increased the LED lighting time. The efficiency and power factor are improved, while the system design is simplified by this control scheme. Without the usage of electrolytic capacitor and magnetic components, the proposed driver possesses advantages of smaller size, longer lifetime and lower cost over others. The proposed driver is implemented in 0.8 μm 5 V/40 V HVCMOS process, which occupies an active area of 820× 920μm2. The measured results show that the average value of the internal reference voltage is 500 4- 7 mV, with a standard deviation of only 4.629 mV, thus LED current can be set accurately. Under 220 V root mean square 50 Hz utility voltage and the number ratio of the three LED strings being 47 : 17 : 16, the system can realize a high power factor of 0.974 and power conversion efficiency of 93.4%.
基金Project supported by the ADI and ASIC Laboratory,China
文摘A boost LED driver featuring a high PWM dimming ratio and optimized efficiency is presented. This LED driver, which has a low dropout voltage and is able to drive 3-7 LEDs in series with constant output current and fast PWM dimming, provides an alternative technique for brightness adjustment. A dual-path control scheme with automatic switching and state maintenance is proposed. Meanwhile, a cascode current mirror structure is applied with the output transistor multiplexed as an LED PWM dimming transistor. Implemented in 0.5 #m 25 V BCD process, the measurement results show that a voltage conversion range of 5 V input to 6-24 V output with constant output current is obtained. With automatically switching dual-path control and an optimized current mirror, the response time during PWM dimming is reduced to as low as 240 ns and the efficiency keeps above 89% over a wide PWM dimming ratio @ 250 mA output current.
基金Project supported by the National Natural Science Foundation of China(No.41274047)the Natural Science Foundation of Jiangsu Province(No.BK2012639)the Changzhou Science and Technology Support(Industrial)Project(No.CE20120074)
文摘A fully integrated LED driver based on a current mode PWM boost DC-DC converter with constant output current is proposed. In order to suppress the inrush of current and the overshoot voltage at the start up state, a soft-start circuit is adopted. Additionally, to adjust the LED brightness without color variation over the full dimming range and achieve high efficiency, a PWM dimming circuit is presented. Furthermore, to keep the loop stability of the LED driver, an internal slope compensation network is designed to avoid the sub-harmonic oscillation when the duty cycle exceeds 50%. Finally, a UVLO circuit is adopted to improve the reliability of the LED driver against the input voltage changing. The LED driver has been fabricated with a standard 0.5/xm CMOS process, and only occupies 1.21 × 0.76 mm^2. Experimental results show that the brightness of the LED can be adjusted by an off- chip PWM signal with a wide adjusting range. The inductor current and output current increase smoothly over the whole load range. The chip is in the UVLO condition when the input voltage is below 2.18 V and has achieved about 137 μs typical start-up time.
文摘A single-stage flyback driving integrated circuit (IC) for light-emitting diodes (LEDs) is proposed. With an average primary-side current estimation and negative feedback networks, the driver operates in the boundary conduction mode (BCM), while the output current can be derived and regulated precisely. By means of a simple external resistor divider, a compensation voltage is produced on the ISEN pin during the turn-on period of the primary MOSFET to improve the line regulation performance. On the other hand, since the delay time between the time that the secondary diode current reaches zero and the turn-on time of the MOSFET can be automatically adjusted, the MOSFET can always turn on at the valley voltage even if the inductance of the primary winding varies with the output power, resulting in quasi-resonant switching for different primary inductances. The driving IC is fabricated in a Dongbu HiTek's 0.35μm bipolar-CMOS-DMOS process. An 18 W LED driver is finally built and tested. Results show that the driver has an average efficiency larger than 86%, a power factor larger than 0.97, and works under the universal input voltage (85-265 V) with the LED current variation within ±0.5%.
文摘A digital controller IC for the flyback converter with primary-side feedback is proposed. The controller is used for adapter charger or LED driver applications. To obtain high accuracy for the primary-side feedback, a digital primary-side sensing technology is adopted, which can auto-track the knee point of the primary auxiliary winding voltage. Furthermore, an internal digital compensator eliminates the need for external loop compensation components while achieving excellent line and load regulation. The controller could output both constant voltage and constant current depending on the load current. Pulse width modulation and pulse frequency modulation are used in constant voltage mode while quasi-resonant control is used in constant current mode. The digital controller is validated by using FPGA.