Calcium magnesium chlorosilicate doped by europium, Ca8Mg(SiO4)4Cl2: Eu^2+, was prepared by the solid state reaction at high temperature. The compound obtained is pure Ca8Mg(SiO4)4Cl2 phase with cubic structure....Calcium magnesium chlorosilicate doped by europium, Ca8Mg(SiO4)4Cl2: Eu^2+, was prepared by the solid state reaction at high temperature. The compound obtained is pure Ca8Mg(SiO4)4Cl2 phase with cubic structure. Its average particle size is 5 μm, and it has good dispersity and morphological form. The excitation spectrum of Ca8Mg(SiO4)4Cl2: Eu^2+ is a wide band, which covers from 270 to 480 nm. The emission spectrum is also a wide band peaked at 510 nm. The luminescent intensity reaches to the maximum when the concentration of Eu^2 + is 2%. The wavelength of emission and excitation of the phosphor with various Eu^2 + contents keeps constant. This spectrum range matches violet and blue LED chips very well, and its strong luminescence intensity is suitable for a green phosphor of tricolor phosphor of white light LED.展开更多
To further understand the energy loss mechanism of the "charge transfer process" that was proposed in our previous work on Eu^2+-Mn^2+ co-doped phosphors, the influence of synthetic temperature and heating time on...To further understand the energy loss mechanism of the "charge transfer process" that was proposed in our previous work on Eu^2+-Mn^2+ co-doped phosphors, the influence of synthetic temperature and heating time on the photoluminescence(PL) behavior of M5(PO4)3Cl:Eu^2+,Mn^2+(M=Ca, Sr) phosphors was investigated by analyzing their PL spectra and decay curves. For the Ca phase, an increase in the synthetic temperature resulted in an increase in the loss from the "charge transfer process" since more Eu^2+ ions were involved in the Eu^2+-Mn^2+ clusters. This was contrary to the thermodynamic expectation. To solve this contradiction, we proposed that the formation of Eu^2+-Mn^2+ clusters was kinetically blocked at lower synthetic temperatures. With an increase in heating time for the phosphors synthesized at lower temperature(such as 1100 ℃) the PL intensity decreased, which supported the above assertion.展开更多
With narrow red photoluminescence (PL) bands, tetravalent Mn^(4+) doped phosphors show promising prospect in commercial application to effectively expand color gamut of phosphor converted LED displays. Here, we report...With narrow red photoluminescence (PL) bands, tetravalent Mn^(4+) doped phosphors show promising prospect in commercial application to effectively expand color gamut of phosphor converted LED displays. Here, we report a type of Sr_(2-z)Mg_(1+y)Y_(z)Al_(22-x)O_(36):xMn^(4+) phosphors with regular cage-like micro-spherical morphologies. The micron size spherical precursors were synthesized with a propylene oxide (PO) driven fast sol–gel method. The cage -like spherical morphology is beneficial to efficiently trapping much incident light to enhance the PL of the phosphors. Being calcined at 1300 ℃, Sr_(2)MgAl_(21.978)O_(36):0.022Mn^(4+) only exhibits the internal quantum efficiency (IQE) of 24.91%. With the Mg^(2+)-Mn^(4+) codoping and Y^(3+)/Sr^(2+) substituting strategies, to fulfill charge balance and produce John-Teller distortion, IQE of Sr_(2-z)Mg_(1+y)Y_(z)Al_(22-x)O_(36):xMn^(4+) can be further improved up to 36.45%. The CIE color coordinates of Sr_(2-z)Mg_(1+y)Y_(z)Al_(22-x)O_(36):xMn^(4+) under near ultraviolet excitation can be stably fixed to (0.723, 0.227) at deep red region. It thus finds a potential application as pc-LED display with much broader color gamut than that of the NTSC standard. Therefore, Sr_(2-z)Mg_(1+y)Y_(z)Al_(22-x)O_(36):xMn^(4+) micron size spheres can be employed as promising red phosphors for high performance LED displays.展开更多
A new series of β-Sr Ge(PO_4)_2:RE(RE=Eu^2+,Eu^3+,Tb^3+) phosphors were synthesized and characterized by using X-ray powder diffraction as well as excitation, and emission spectroscopy. The results exhibited ...A new series of β-Sr Ge(PO_4)_2:RE(RE=Eu^2+,Eu^3+,Tb^3+) phosphors were synthesized and characterized by using X-ray powder diffraction as well as excitation, and emission spectroscopy. The results exhibited that the singly doping Eu2+, Tb^3+ and Eu^3+ of β-Sr Ge(PO_4)_2 emit strong blue, green and red light under UV irradiation, respectively. Based on the charge transfer transitions of O^2-→RE^3+, an overlapping excitation band of the as-obtained phosphors could be found in UV region, which made β-Sr Ge(PO_4)_2:RE(RE=Eu^2+,Eu^3+,Tb^3+) serve as a new series of RGB phosphors. Meanwhile, these phosphors could also be excited by 380 nm excitation simultaneously, and hence the three phosphors mixed physically could achieve the tunable hues from blue to white region by adjusting the mixed ratios.展开更多
In the paper, the influences of the chip, silicone and phosphors on the color coordinate shift of LED were studied. In the process of LED baking, it was found that the effect of the chip and silicone on the color coor...In the paper, the influences of the chip, silicone and phosphors on the color coordinate shift of LED were studied. In the process of LED baking, it was found that the effect of the chip and silicone on the color coordinate drift is less than 3% through the analysis of each influencing factor. But the influence of the phosphors is large and accounted for 11.11% of the overall impact factors. Therefore, it is important to select the better green phosphors in thermal stability for the LED package and it has a guiding significance to the color coordinate of LED distribution.展开更多
Green emitting Eu^2+ doped(CaxSr(1–x))6Si(25.6)Al(6.4)N(41.6)O(4.4) phosphors with x value ranging from 0 to 0.1 were synthesized by the solid state reaction method under nitrogen atmosphere.The X-ray di...Green emitting Eu^2+ doped(CaxSr(1–x))6Si(25.6)Al(6.4)N(41.6)O(4.4) phosphors with x value ranging from 0 to 0.1 were synthesized by the solid state reaction method under nitrogen atmosphere.The X-ray diffraction(XRD)patterns of the phosphors with different Ca^2+ concentrations indicated that pure sialon phases were obtained.Crystal structure of these sialon phases was estimated to be a commensurate composite network stacking by two different types of layers.Intense and tunable green emissions with a slight red shift from 515 to 520 nm were observed with varying Ca/Sr ratios.The emission intensity decreased gradually because of the increase of the crystal splitting effect.Thermal quenching properties of the phosphors with different Ca^2+ saturation were also discussed.The thermal stability became worse as more Ca^2+ ions substituted for Sr^2+ ions according to a larger Stokes shift.The solid solution phosphors could be a promising candidate for white LEDs for their interesting photoluminescence properties when the thermal stability would be improved.展开更多
文摘Calcium magnesium chlorosilicate doped by europium, Ca8Mg(SiO4)4Cl2: Eu^2+, was prepared by the solid state reaction at high temperature. The compound obtained is pure Ca8Mg(SiO4)4Cl2 phase with cubic structure. Its average particle size is 5 μm, and it has good dispersity and morphological form. The excitation spectrum of Ca8Mg(SiO4)4Cl2: Eu^2+ is a wide band, which covers from 270 to 480 nm. The emission spectrum is also a wide band peaked at 510 nm. The luminescent intensity reaches to the maximum when the concentration of Eu^2 + is 2%. The wavelength of emission and excitation of the phosphor with various Eu^2 + contents keeps constant. This spectrum range matches violet and blue LED chips very well, and its strong luminescence intensity is suitable for a green phosphor of tricolor phosphor of white light LED.
基金supported by the National Natural Science Foundation of China(21371015,51304086)the National Basic Research Program of China(2014CB643801)the National High Technology Research and Development Program of China(2011AA03A101)
文摘To further understand the energy loss mechanism of the "charge transfer process" that was proposed in our previous work on Eu^2+-Mn^2+ co-doped phosphors, the influence of synthetic temperature and heating time on the photoluminescence(PL) behavior of M5(PO4)3Cl:Eu^2+,Mn^2+(M=Ca, Sr) phosphors was investigated by analyzing their PL spectra and decay curves. For the Ca phase, an increase in the synthetic temperature resulted in an increase in the loss from the "charge transfer process" since more Eu^2+ ions were involved in the Eu^2+-Mn^2+ clusters. This was contrary to the thermodynamic expectation. To solve this contradiction, we proposed that the formation of Eu^2+-Mn^2+ clusters was kinetically blocked at lower synthetic temperatures. With an increase in heating time for the phosphors synthesized at lower temperature(such as 1100 ℃) the PL intensity decreased, which supported the above assertion.
基金Project supported by the National Natural Science Foundation of China (51872255,51672243)。
文摘With narrow red photoluminescence (PL) bands, tetravalent Mn^(4+) doped phosphors show promising prospect in commercial application to effectively expand color gamut of phosphor converted LED displays. Here, we report a type of Sr_(2-z)Mg_(1+y)Y_(z)Al_(22-x)O_(36):xMn^(4+) phosphors with regular cage-like micro-spherical morphologies. The micron size spherical precursors were synthesized with a propylene oxide (PO) driven fast sol–gel method. The cage -like spherical morphology is beneficial to efficiently trapping much incident light to enhance the PL of the phosphors. Being calcined at 1300 ℃, Sr_(2)MgAl_(21.978)O_(36):0.022Mn^(4+) only exhibits the internal quantum efficiency (IQE) of 24.91%. With the Mg^(2+)-Mn^(4+) codoping and Y^(3+)/Sr^(2+) substituting strategies, to fulfill charge balance and produce John-Teller distortion, IQE of Sr_(2-z)Mg_(1+y)Y_(z)Al_(22-x)O_(36):xMn^(4+) can be further improved up to 36.45%. The CIE color coordinates of Sr_(2-z)Mg_(1+y)Y_(z)Al_(22-x)O_(36):xMn^(4+) under near ultraviolet excitation can be stably fixed to (0.723, 0.227) at deep red region. It thus finds a potential application as pc-LED display with much broader color gamut than that of the NTSC standard. Therefore, Sr_(2-z)Mg_(1+y)Y_(z)Al_(22-x)O_(36):xMn^(4+) micron size spheres can be employed as promising red phosphors for high performance LED displays.
基金Project supported by the National Natural Science Foundation of China(21271161)the Program for New Century Excellent Talents in University(NCET-13-0530)
文摘A new series of β-Sr Ge(PO_4)_2:RE(RE=Eu^2+,Eu^3+,Tb^3+) phosphors were synthesized and characterized by using X-ray powder diffraction as well as excitation, and emission spectroscopy. The results exhibited that the singly doping Eu2+, Tb^3+ and Eu^3+ of β-Sr Ge(PO_4)_2 emit strong blue, green and red light under UV irradiation, respectively. Based on the charge transfer transitions of O^2-→RE^3+, an overlapping excitation band of the as-obtained phosphors could be found in UV region, which made β-Sr Ge(PO_4)_2:RE(RE=Eu^2+,Eu^3+,Tb^3+) serve as a new series of RGB phosphors. Meanwhile, these phosphors could also be excited by 380 nm excitation simultaneously, and hence the three phosphors mixed physically could achieve the tunable hues from blue to white region by adjusting the mixed ratios.
基金supported by the National Natural Science Foundation of China(No.11474036)the Natural Science Foundation of Shanghai(No.12ZR1430900)+4 种基金the Shanghai Institute of Technology Talents Scheme(No.YJ2014-04)the Shanghai Municipal Alliance Program(Nos.Lm201514,Lm201505,Lm201455)the Science and Technology Commission of Shanghai Municipality(CN)(No.14500503300)the Shanghai Cooperative Project(No.Shanghai CXY-2013-61)the Jiashan County Technology Program(No.20141316)
文摘In the paper, the influences of the chip, silicone and phosphors on the color coordinate shift of LED were studied. In the process of LED baking, it was found that the effect of the chip and silicone on the color coordinate drift is less than 3% through the analysis of each influencing factor. But the influence of the phosphors is large and accounted for 11.11% of the overall impact factors. Therefore, it is important to select the better green phosphors in thermal stability for the LED package and it has a guiding significance to the color coordinate of LED distribution.
基金Project supported by the National Key Basic Research Program of China(2014CB643801)the National Natural Science Foundation of China(51102021,51302016)
文摘Green emitting Eu^2+ doped(CaxSr(1–x))6Si(25.6)Al(6.4)N(41.6)O(4.4) phosphors with x value ranging from 0 to 0.1 were synthesized by the solid state reaction method under nitrogen atmosphere.The X-ray diffraction(XRD)patterns of the phosphors with different Ca^2+ concentrations indicated that pure sialon phases were obtained.Crystal structure of these sialon phases was estimated to be a commensurate composite network stacking by two different types of layers.Intense and tunable green emissions with a slight red shift from 515 to 520 nm were observed with varying Ca/Sr ratios.The emission intensity decreased gradually because of the increase of the crystal splitting effect.Thermal quenching properties of the phosphors with different Ca^2+ saturation were also discussed.The thermal stability became worse as more Ca^2+ ions substituted for Sr^2+ ions according to a larger Stokes shift.The solid solution phosphors could be a promising candidate for white LEDs for their interesting photoluminescence properties when the thermal stability would be improved.