Objective To extract and analyze information on the regularity with which wind-dispelling medication was prescribed by LI Dong-Yuan and many doctors of his school of thought and to provide theoretical basis and ideas ...Objective To extract and analyze information on the regularity with which wind-dispelling medication was prescribed by LI Dong-Yuan and many doctors of his school of thought and to provide theoretical basis and ideas for modern clinical application to facilitate the use,research,and development of these medications.Methods Original data on wind-dispelling medication described in LI Dong-Yuan’s works were collected,sorted and organized.Data mining and comprehensive analysis were performed by using a series of data processing softwares,such as SPSS 22.0,Modeler 18.0 and x Miner.By reviewing LI Dong-Yuan’s writings on wind-dispelling medication,the number of prescriptions for wind-dispelling medication were counted.Frequency of use of wind-dispelling medication was determined,and association rules analysis,factor analysis,and core drug network analysis were used to reveal associations of the symptoms of syndromes and treatment with wind-dispelling medication and to reveal the regularity with which these medications were prescribed by LI Dong-Yuan.Results A total of 356 prescriptions and 121 flavors of winddispelling medication were observed.Among them,five kinds of medicinal properties,seven kinds of medicinal tastes,and 12 kinds of meridians were identified.Furthermore,herbs were divided into 18 categories according to their efficacy.Statistical analysis showed that there were 23 wind-dispelling medications that were prescribed with a frequency of≥60.The mainly used drugs were Saposhnikoviae Radix(Fang Feng,防风),Bupleuri Radix(Chai Hu,柴胡),Cimicifugae Rhizoma(Sheng Ma,升麻),Notopterygii Rhizoma Et Radix(Qiang Huo,羌活),Puerariae Lobatae Radix(Ge Gen,葛根),Chuanxiong Rhizoma(Chuan Xiong,川芎),and Ephedrae Herba(Ma Huang,麻黄).In addition,we analyzed the association rules wind-dispelling medication and obtained 23 one-to-one drug association rules and 11 multiple-to-one drug association rules.The core drug network analysis data visualization showed core drugs used in the treatment of external wind assailing the exterior(wind-cold,wind-heat,wind-dampness,etc.),wind-stroke,and tonifying middle and replenishing Qi.Factor analysis was performed on the drugs used by LI Dong-Yuan,and finally 4 groups of wind medicine combinations were obtained.Conclusions This data mining-based study on the regularity of wind-dispelling medication described in LI Dong-Yuan’s works is of great significance,because it reveals the clinical application of its theoretical formulae and medications.展开更多
The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious int...The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious interfacial instability,which is a big challenge for design and application of nonflammable GPEs.Here,a nonflammable GPE(SGPE)is developed by in situ polymerizing trifluoroethyl methacrylate(TFMA)monomers with flame-retardant triethyl phosphate(TEP)solvents and LiTFSI–LiDFOB dual lithium salts.TEP is strongly anchored to PTFMA matrix via polarity interaction between-P=O and-CH_(2)CF_(3).It reduces free TEP molecules,which obviously mitigates interfacial reactions,and enhances flame-retardant performance of TEP surprisingly.Anchored TEP molecules are also inhibited in solvation of Li^(+),leading to anion-dominated solvation sheath,which creates inorganic-rich solid electrolyte interface/cathode electrolyte interface layers.Such coordination structure changes Li^(+)transport from sluggish vehicular to fast structural transport,raising ionic conductivity to 1.03 mS cm^(-1) and transfer number to 0.41 at 30℃.The Li|SGPE|Li cell presents highly reversible Li stripping/plating performance for over 1000 h at 0.1 mA cm^(−2),and 4.2 V LiCoO_(2)|SGPE|Li battery delivers high average specific capacity>120 mAh g^(−1) over 200 cycles.This study paves a new way to make nonflammable GPE that is compatible with Li metal anode.展开更多
Regulation the electronic density of solid-state electrolyte by donor–acceptor(D–A)system can achieve highly-selective Li^(+)transportation and conduction in solid-state Li metal batteries.This study reports a high-...Regulation the electronic density of solid-state electrolyte by donor–acceptor(D–A)system can achieve highly-selective Li^(+)transportation and conduction in solid-state Li metal batteries.This study reports a high-performance solid-state electrolyte thorough D–A-linked covalent organic frameworks(COFs)based on intramolecular charge transfer interactions.Unlike other reported COFbased solid-state electrolyte,the developed concept with D–A-linked COFs not only achieves electronic modulation to promote highly-selective Li^(+)migration and inhibit Li dendrite,but also offers a crucial opportunity to understand the role of electronic density in solid-state Li metal batteries.The introduced strong electronegativity F-based ligand in COF electrolyte results in highlyselective Li^(+)(transference number 0.83),high ionic conductivity(6.7×10^(-4)S cm^(−1)),excellent cyclic ability(1000 h)in Li metal symmetric cell and high-capacity retention in Li/LiFePO_(4)cell(90.8%for 300 cycles at 5C)than substituted C-and N-based ligands.This is ascribed to outstanding D–A interaction between donor porphyrin and acceptor F atoms,which effectively expedites electron transferring from porphyrin to F-based ligand and enhances Li^(+)kinetics.Consequently,we anticipate that this work creates insight into the strategy for accelerating Li^(+)conduction in high-performance solid-state Li metal batteries through D–A system.展开更多
Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testifie...Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testified in a practical battery.Herein,we design and fabricate a quasi-solid-state electrolyte(QSSE)based on a POC to enable the stable operation of Li-metal batteries(LMBs).Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC,the resulting POC-based QSSE exhibits a high Li+transference number of 0.67 and a high ionic conductivity of 1.25×10^(−4) S cm^(−1) with a low activation energy of 0.17 eV.These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h.As a proof of concept,the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85%capacity retention after 1000 cycles.Therefore,our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems,such as Na and K batteries.展开更多
识别学科交叉研究的前沿主题,并对演化趋势进行分析,有助于揭示学科交叉融合的方向,为未来创新性、突破性研究提供参考。首先,基于引文视角构建测度论文学科交叉性的指标,识别具有学科交叉性的研究论文;其次,通过BERT-LDA模型识别研究主...识别学科交叉研究的前沿主题,并对演化趋势进行分析,有助于揭示学科交叉融合的方向,为未来创新性、突破性研究提供参考。首先,基于引文视角构建测度论文学科交叉性的指标,识别具有学科交叉性的研究论文;其次,通过BERT-LDA模型识别研究主题,利用余弦相似度计算主题之间的相似度,构建主题演化路径;最后,基于新颖度、增长性、关注度、影响力构建前沿主题识别指标体系,识别具有前沿性的学科交叉研究主题。以图书情报学(Library and Information Science,LIS)为例展开研究,研究结果显示,2004—2023年该学科领域的交叉研究主题呈现出逐渐细化和深入的特点,主要集中在信息挖掘与知识发现、互联网信息行为、医疗信息学3个方面;现阶段学科交叉研究前沿主题为医疗数据模型、舆情治理与情感分析、机器学习与深度学习;基于信息技术的研究方法和其在不同领域的应用研究具有良好的应用前景,有可能成为未来LIS领域的核心研究主题。展开更多
The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein...The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.展开更多
基金the funding support from the National Natural Science Foundation of China(No.81874429 and No.81603512)Hunan Natural Science Foundation(No.2019JJ40210).
文摘Objective To extract and analyze information on the regularity with which wind-dispelling medication was prescribed by LI Dong-Yuan and many doctors of his school of thought and to provide theoretical basis and ideas for modern clinical application to facilitate the use,research,and development of these medications.Methods Original data on wind-dispelling medication described in LI Dong-Yuan’s works were collected,sorted and organized.Data mining and comprehensive analysis were performed by using a series of data processing softwares,such as SPSS 22.0,Modeler 18.0 and x Miner.By reviewing LI Dong-Yuan’s writings on wind-dispelling medication,the number of prescriptions for wind-dispelling medication were counted.Frequency of use of wind-dispelling medication was determined,and association rules analysis,factor analysis,and core drug network analysis were used to reveal associations of the symptoms of syndromes and treatment with wind-dispelling medication and to reveal the regularity with which these medications were prescribed by LI Dong-Yuan.Results A total of 356 prescriptions and 121 flavors of winddispelling medication were observed.Among them,five kinds of medicinal properties,seven kinds of medicinal tastes,and 12 kinds of meridians were identified.Furthermore,herbs were divided into 18 categories according to their efficacy.Statistical analysis showed that there were 23 wind-dispelling medications that were prescribed with a frequency of≥60.The mainly used drugs were Saposhnikoviae Radix(Fang Feng,防风),Bupleuri Radix(Chai Hu,柴胡),Cimicifugae Rhizoma(Sheng Ma,升麻),Notopterygii Rhizoma Et Radix(Qiang Huo,羌活),Puerariae Lobatae Radix(Ge Gen,葛根),Chuanxiong Rhizoma(Chuan Xiong,川芎),and Ephedrae Herba(Ma Huang,麻黄).In addition,we analyzed the association rules wind-dispelling medication and obtained 23 one-to-one drug association rules and 11 multiple-to-one drug association rules.The core drug network analysis data visualization showed core drugs used in the treatment of external wind assailing the exterior(wind-cold,wind-heat,wind-dampness,etc.),wind-stroke,and tonifying middle and replenishing Qi.Factor analysis was performed on the drugs used by LI Dong-Yuan,and finally 4 groups of wind medicine combinations were obtained.Conclusions This data mining-based study on the regularity of wind-dispelling medication described in LI Dong-Yuan’s works is of great significance,because it reveals the clinical application of its theoretical formulae and medications.
基金supported by the National Natural Science Foundation of China(Nos.52172214,52272221,52171182)the Postdoctoral Innovation Project of Shandong Province(No.202102003)+2 种基金The Key Research and Development Program of Shandong Province(2021ZLGX01)the Qilu Young Scholar ProgramHPC Cloud Platform of Shandong University are also thanked.
文摘The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious interfacial instability,which is a big challenge for design and application of nonflammable GPEs.Here,a nonflammable GPE(SGPE)is developed by in situ polymerizing trifluoroethyl methacrylate(TFMA)monomers with flame-retardant triethyl phosphate(TEP)solvents and LiTFSI–LiDFOB dual lithium salts.TEP is strongly anchored to PTFMA matrix via polarity interaction between-P=O and-CH_(2)CF_(3).It reduces free TEP molecules,which obviously mitigates interfacial reactions,and enhances flame-retardant performance of TEP surprisingly.Anchored TEP molecules are also inhibited in solvation of Li^(+),leading to anion-dominated solvation sheath,which creates inorganic-rich solid electrolyte interface/cathode electrolyte interface layers.Such coordination structure changes Li^(+)transport from sluggish vehicular to fast structural transport,raising ionic conductivity to 1.03 mS cm^(-1) and transfer number to 0.41 at 30℃.The Li|SGPE|Li cell presents highly reversible Li stripping/plating performance for over 1000 h at 0.1 mA cm^(−2),and 4.2 V LiCoO_(2)|SGPE|Li battery delivers high average specific capacity>120 mAh g^(−1) over 200 cycles.This study paves a new way to make nonflammable GPE that is compatible with Li metal anode.
基金financial support provided by National Natural Science Foundation of China(52303283,52372232,52064049)the Major Science and Technology Projects of Yunnan Province(202302AB080019-3)+2 种基金National Natural Science Foundation of Yunnan Province(202301AS070040,202401AU070201)the Analysis and Measurements Center of Yunnan University for the sample testing servicethe Electron Microscope Center of Yunnan University for the support of this work.
文摘Regulation the electronic density of solid-state electrolyte by donor–acceptor(D–A)system can achieve highly-selective Li^(+)transportation and conduction in solid-state Li metal batteries.This study reports a high-performance solid-state electrolyte thorough D–A-linked covalent organic frameworks(COFs)based on intramolecular charge transfer interactions.Unlike other reported COFbased solid-state electrolyte,the developed concept with D–A-linked COFs not only achieves electronic modulation to promote highly-selective Li^(+)migration and inhibit Li dendrite,but also offers a crucial opportunity to understand the role of electronic density in solid-state Li metal batteries.The introduced strong electronegativity F-based ligand in COF electrolyte results in highlyselective Li^(+)(transference number 0.83),high ionic conductivity(6.7×10^(-4)S cm^(−1)),excellent cyclic ability(1000 h)in Li metal symmetric cell and high-capacity retention in Li/LiFePO_(4)cell(90.8%for 300 cycles at 5C)than substituted C-and N-based ligands.This is ascribed to outstanding D–A interaction between donor porphyrin and acceptor F atoms,which effectively expedites electron transferring from porphyrin to F-based ligand and enhances Li^(+)kinetics.Consequently,we anticipate that this work creates insight into the strategy for accelerating Li^(+)conduction in high-performance solid-state Li metal batteries through D–A system.
基金supported by the National Natural Science Foundation of China(No.92372123)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515012057,2022B1515020005,2023B1515130004)Guangzhou Basic and Applied Basic Research Foundation(No.202201011342).
文摘Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testified in a practical battery.Herein,we design and fabricate a quasi-solid-state electrolyte(QSSE)based on a POC to enable the stable operation of Li-metal batteries(LMBs).Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC,the resulting POC-based QSSE exhibits a high Li+transference number of 0.67 and a high ionic conductivity of 1.25×10^(−4) S cm^(−1) with a low activation energy of 0.17 eV.These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h.As a proof of concept,the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85%capacity retention after 1000 cycles.Therefore,our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems,such as Na and K batteries.
文摘识别学科交叉研究的前沿主题,并对演化趋势进行分析,有助于揭示学科交叉融合的方向,为未来创新性、突破性研究提供参考。首先,基于引文视角构建测度论文学科交叉性的指标,识别具有学科交叉性的研究论文;其次,通过BERT-LDA模型识别研究主题,利用余弦相似度计算主题之间的相似度,构建主题演化路径;最后,基于新颖度、增长性、关注度、影响力构建前沿主题识别指标体系,识别具有前沿性的学科交叉研究主题。以图书情报学(Library and Information Science,LIS)为例展开研究,研究结果显示,2004—2023年该学科领域的交叉研究主题呈现出逐渐细化和深入的特点,主要集中在信息挖掘与知识发现、互联网信息行为、医疗信息学3个方面;现阶段学科交叉研究前沿主题为医疗数据模型、舆情治理与情感分析、机器学习与深度学习;基于信息技术的研究方法和其在不同领域的应用研究具有良好的应用前景,有可能成为未来LIS领域的核心研究主题。
基金support from the National Science Foundation of China (No.51971249)the Natural Science Foundation of Shandong Province,China (No.ZR2020KE012)the Science and Technology Planning Project of Longkou City,China (No.2021KJJH025).
基金the financial support from the National Natural Science Foundation of China(Nos.22205191 and 52002346)the Science and Technology Innovation Program of Hunan Province(No.2021RC3109)+1 种基金the Natural Science Foundation of Hunan Province,China(No.2022JJ40446)Guangxi Key Laboratory of Low Carbon Energy Material(No.2020GXKLLCEM01)。
文摘The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.