A formula is developed to describe the propagation of beams driven by few-cycle Gaussian pulse in a media with group velocity dispersion (GVD). With the method, the spatiotemporal evolution of the pulsed beam can be...A formula is developed to describe the propagation of beams driven by few-cycle Gaussian pulse in a media with group velocity dispersion (GVD). With the method, the spatiotemporal evolution of the pulsed beam can be straightforwardly quantified as long as the monochromatic beam solutions in free space, which have been widely investigated in previous works, are known. The method makes it possible to analytically deal with the few-cycle pulsed beams with transverse profiles other than the Gaussian one, which is, to our knowledge, the one mainly investigated previously, in GVD media.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 60538010, 10576009 and 10674050, the Programme for Innovative Research Team of Higher Education in Guangdong (06CXTD005), the Specialized Research Fund for the Doctoral Programme of Higher Education of China (20060574006), and the National High-Technology Research and Development Programme of China under Grant No 2007AAXXX507.
文摘A formula is developed to describe the propagation of beams driven by few-cycle Gaussian pulse in a media with group velocity dispersion (GVD). With the method, the spatiotemporal evolution of the pulsed beam can be straightforwardly quantified as long as the monochromatic beam solutions in free space, which have been widely investigated in previous works, are known. The method makes it possible to analytically deal with the few-cycle pulsed beams with transverse profiles other than the Gaussian one, which is, to our knowledge, the one mainly investigated previously, in GVD media.