Pharmaceutical delivery systems are developed to improve the physicochemical properties of therapeutic compounds. Emulsions are one of these drug delivering systems formulated using water, oils and lipids as main ingr...Pharmaceutical delivery systems are developed to improve the physicochemical properties of therapeutic compounds. Emulsions are one of these drug delivering systems formulated using water, oils and lipids as main ingredients. Extensive data are usually generated on the physical and chemical characteristics of these oil-in-water and lipid emulsions. However, the oxidative tendency of emulsions is often overlooked. Oxidation impacts the overall quality and safety of these pharmaceutical emulsions. Additionally, introducing oxidatively unstable emulsions into biological systems further promotes oxidation in situ. Products of these reactions then continue to pose serious harm to cells and fuel other physiological oxidation reactions. Consequently, the increase of oxidation products leads to oxidative damage to biological systems. Thus, emulsions with lower lipid peroxidation are more stable and will reduce the negative effects of oxidation in situ. Preventive measures during the formulation of emulsions are important. Many naturally occurring and cost effective substances possess low oxidation tendencies and confer oxidative protection when used in emulsions. Additionally,certain preparatory methods should be employed to reduce or better control lipid peroxidation.Finally, emulsions must be evaluated for their oxidation susceptibility using the various techniques available. Careful attention to the preparation of emulsions and assessment of their oxidative stability will help produce safer emulsions without compromising efficacy.展开更多
In the present paper, blood lipids peroxide(LPO) level and activities of glutathione peroxidase(GSH-Px) and superoxide dismutase(SOD) were investigated before and after combined treatment of acupuncture and moxibustio...In the present paper, blood lipids peroxide(LPO) level and activities of glutathione peroxidase(GSH-Px) and superoxide dismutase(SOD) were investigated before and after combined treatment of acupuncture and moxibustion and Chinese drugs in patients of vascular dementia(VD), and their results were compared with those in healthy persons with the similar ages to the patients. The results showed that the blood LPO level increased significantly, and the activities of SOD and GSH-Px reduced significantly in patients of VD as compared with those in the control group. Degrees of patient’s condition were related with amplitudes of the increase of LPO and the reduction of activities of GSHPx and SOD. Combined treatment of acupuncture and moxibustion and Chinese drugs could raise markedly activitles of blood GSH-Px and SOD, and lowered LPO level in the patients of VD, which are related to clinical therapeutic effects. It is considered that combination of acupuncture and moxibustion with Chinese drugs can increase the action of the antiperoxidative system in the patients of VD, exerting anti-peroxidative ability and clearing LPO and reducing the oxidative injury of the organism by oxygen free radical, which is one of mechanisms of combined treatment of acupuncture and moxibustion with Chinese drugs.展开更多
Mouse peritoneal macrophages were incubated in DMEM with pox-LDL and Rradlx Salviae Miltiorrhizae (RSM) to investigate the effects of RSM on the internalization of peroxidized low density lipoprotein (pox-LDL) by usin...Mouse peritoneal macrophages were incubated in DMEM with pox-LDL and Rradlx Salviae Miltiorrhizae (RSM) to investigate the effects of RSM on the internalization of peroxidized low density lipoprotein (pox-LDL) by using lipid analysis and electron microscopy. Lipid peroxide (LPO) concentrations were increased slightly in the medium after incubation of macrophages with normal LDL (n-LDL), while decreased significantly in the media after incubation of macrophages with pox-LDL. In the three groups with pox-LDL, it could be found that there was a dose-dependent decrease of concentrations of LPO and total cholesterol (TCH) in the two RSM groups, and the decrease in the two RSM groups was much greater than in the group without RSM. RSM accelerated a more decrease of LPO than cholesterol contents in the media containing pox-LDL. The ultrastructural studies also showed that RSM induced the accumulation of lipid droplets in the cytoplasm of mouse peritoneal macrophages. The results suggested that RSM could accelerate the phagocytosis and degradation of pox-LDL by macrophages.展开更多
Alzheimer's disease is an age-related neurodegenerative disorder with a complex and incompletely understood pathogenesis. Despite extensive research, a cure for Alzheimer's disease has not yet been found. Oxid...Alzheimer's disease is an age-related neurodegenerative disorder with a complex and incompletely understood pathogenesis. Despite extensive research, a cure for Alzheimer's disease has not yet been found. Oxidative stress mediates excessive oxidative responses, and its involvement in Alzheimer's disease pathogenesis as a primary or secondary pathological event is widely accepted. As a member of the selenium-containing antioxidant enzyme family, glutathione peroxidase 4 reduces esterified phospholipid hydroperoxides to maintain cellular redox homeostasis. With the discovery of ferroptosis, the central role of glutathione peroxidase 4 in anti-lipid peroxidation in several diseases, including Alzheimer's disease, has received widespread attention. Increasing evidence suggests that glutathione peroxidase 4 expression is inhibited in the Alzheimer's disease brain, resulting in oxidative stress, inflammation, ferroptosis, and apoptosis, which are closely associated with pathological damage in Alzheimer's disease. Several therapeutic approaches, such as small molecule drugs, natural plant products, and non-pharmacological treatments, ameliorate pathological damage and cognitive function in Alzheimer's disease by promoting glutathione peroxidase 4 expression and enhancing glutathione peroxidase 4 activity. Therefore, glutathione peroxidase 4 upregulation may be a promising strategy for the treatment of Alzheimer's disease. This review provides an overview of the gene structure, biological functions, and regulatory mechanisms of glutathione peroxidase 4, a discussion on the important role of glutathione peroxidase 4 in pathological events closely related to Alzheimer's disease, and a summary of the advances in small-molecule drugs, natural plant products, and non-pharmacological therapies targeting glutathione peroxidase 4 for the treatment of Alzheimer's disease. Most prior studies on this subject used animal models, and relevant clinical studies are lacking. Future clinical trials are required to validate the therapeutic effects of strategies targeting glutathione peroxidase 4 in the treatment of Alzheimer's disease.展开更多
文摘Pharmaceutical delivery systems are developed to improve the physicochemical properties of therapeutic compounds. Emulsions are one of these drug delivering systems formulated using water, oils and lipids as main ingredients. Extensive data are usually generated on the physical and chemical characteristics of these oil-in-water and lipid emulsions. However, the oxidative tendency of emulsions is often overlooked. Oxidation impacts the overall quality and safety of these pharmaceutical emulsions. Additionally, introducing oxidatively unstable emulsions into biological systems further promotes oxidation in situ. Products of these reactions then continue to pose serious harm to cells and fuel other physiological oxidation reactions. Consequently, the increase of oxidation products leads to oxidative damage to biological systems. Thus, emulsions with lower lipid peroxidation are more stable and will reduce the negative effects of oxidation in situ. Preventive measures during the formulation of emulsions are important. Many naturally occurring and cost effective substances possess low oxidation tendencies and confer oxidative protection when used in emulsions. Additionally,certain preparatory methods should be employed to reduce or better control lipid peroxidation.Finally, emulsions must be evaluated for their oxidation susceptibility using the various techniques available. Careful attention to the preparation of emulsions and assessment of their oxidative stability will help produce safer emulsions without compromising efficacy.
文摘In the present paper, blood lipids peroxide(LPO) level and activities of glutathione peroxidase(GSH-Px) and superoxide dismutase(SOD) were investigated before and after combined treatment of acupuncture and moxibustion and Chinese drugs in patients of vascular dementia(VD), and their results were compared with those in healthy persons with the similar ages to the patients. The results showed that the blood LPO level increased significantly, and the activities of SOD and GSH-Px reduced significantly in patients of VD as compared with those in the control group. Degrees of patient’s condition were related with amplitudes of the increase of LPO and the reduction of activities of GSHPx and SOD. Combined treatment of acupuncture and moxibustion and Chinese drugs could raise markedly activitles of blood GSH-Px and SOD, and lowered LPO level in the patients of VD, which are related to clinical therapeutic effects. It is considered that combination of acupuncture and moxibustion with Chinese drugs can increase the action of the antiperoxidative system in the patients of VD, exerting anti-peroxidative ability and clearing LPO and reducing the oxidative injury of the organism by oxygen free radical, which is one of mechanisms of combined treatment of acupuncture and moxibustion with Chinese drugs.
文摘Mouse peritoneal macrophages were incubated in DMEM with pox-LDL and Rradlx Salviae Miltiorrhizae (RSM) to investigate the effects of RSM on the internalization of peroxidized low density lipoprotein (pox-LDL) by using lipid analysis and electron microscopy. Lipid peroxide (LPO) concentrations were increased slightly in the medium after incubation of macrophages with normal LDL (n-LDL), while decreased significantly in the media after incubation of macrophages with pox-LDL. In the three groups with pox-LDL, it could be found that there was a dose-dependent decrease of concentrations of LPO and total cholesterol (TCH) in the two RSM groups, and the decrease in the two RSM groups was much greater than in the group without RSM. RSM accelerated a more decrease of LPO than cholesterol contents in the media containing pox-LDL. The ultrastructural studies also showed that RSM induced the accumulation of lipid droplets in the cytoplasm of mouse peritoneal macrophages. The results suggested that RSM could accelerate the phagocytosis and degradation of pox-LDL by macrophages.
基金supported by the National Natural Science Foundation of China,No.82071442 (to LS)a grant from the Jilin Provincial Department of Finance,No.JLSWSRCZX2021-004 (to LS)。
文摘Alzheimer's disease is an age-related neurodegenerative disorder with a complex and incompletely understood pathogenesis. Despite extensive research, a cure for Alzheimer's disease has not yet been found. Oxidative stress mediates excessive oxidative responses, and its involvement in Alzheimer's disease pathogenesis as a primary or secondary pathological event is widely accepted. As a member of the selenium-containing antioxidant enzyme family, glutathione peroxidase 4 reduces esterified phospholipid hydroperoxides to maintain cellular redox homeostasis. With the discovery of ferroptosis, the central role of glutathione peroxidase 4 in anti-lipid peroxidation in several diseases, including Alzheimer's disease, has received widespread attention. Increasing evidence suggests that glutathione peroxidase 4 expression is inhibited in the Alzheimer's disease brain, resulting in oxidative stress, inflammation, ferroptosis, and apoptosis, which are closely associated with pathological damage in Alzheimer's disease. Several therapeutic approaches, such as small molecule drugs, natural plant products, and non-pharmacological treatments, ameliorate pathological damage and cognitive function in Alzheimer's disease by promoting glutathione peroxidase 4 expression and enhancing glutathione peroxidase 4 activity. Therefore, glutathione peroxidase 4 upregulation may be a promising strategy for the treatment of Alzheimer's disease. This review provides an overview of the gene structure, biological functions, and regulatory mechanisms of glutathione peroxidase 4, a discussion on the important role of glutathione peroxidase 4 in pathological events closely related to Alzheimer's disease, and a summary of the advances in small-molecule drugs, natural plant products, and non-pharmacological therapies targeting glutathione peroxidase 4 for the treatment of Alzheimer's disease. Most prior studies on this subject used animal models, and relevant clinical studies are lacking. Future clinical trials are required to validate the therapeutic effects of strategies targeting glutathione peroxidase 4 in the treatment of Alzheimer's disease.