针对实际工业生产过程中数据的非线性、高维度等特征导致的故障特征难以提取、故障诊断率低的问题,提出将双局部近邻标准化(Double Local Neighborhood Standardization,DLNS)与局部线性嵌入(LLE)相结合进行故障特征提取,并使用霜冰优...针对实际工业生产过程中数据的非线性、高维度等特征导致的故障特征难以提取、故障诊断率低的问题,提出将双局部近邻标准化(Double Local Neighborhood Standardization,DLNS)与局部线性嵌入(LLE)相结合进行故障特征提取,并使用霜冰优化算法(RIME)对最小二乘支持向量机(LSSVM)进行参数优化的故障诊断方法。首先利用DLNS对数据进行预处理,然后使用LLE方法对数据进行降维重构以提取故障特征,其次,利用RIME算法对LSSVM的惩罚因子与核参数进行寻优,以获取最优的LSSVM模型用于故障诊断。最后将所提方法应用于田纳西-伊斯曼过程(TE)进行仿真实验。实验结果表明,所提方法能够有效提高故障诊断的诊断效果,验证了其在实际应用中的有效性。展开更多
现有全局优化算法都使用不同范数约束输出图像梯度来实现图像平滑,但会牺牲图像中的弱结构信息来达到较好的平滑性能,导致输出图像出现颜色失真和细节模糊的情况。针对上述问题,提出一种基于LLE的边缘保持图像平滑算法(edge preserving ...现有全局优化算法都使用不同范数约束输出图像梯度来实现图像平滑,但会牺牲图像中的弱结构信息来达到较好的平滑性能,导致输出图像出现颜色失真和细节模糊的情况。针对上述问题,提出一种基于LLE的边缘保持图像平滑算法(edge preserving image smoothing algorithm based on LLE,Ep-LLE),引入局部线性嵌入(LLE)的思想作为优化函数的正则化项并采用L_(2)范数进行惩罚。该方法利用图像局部区域内像素存在的相互关系,通过约束局部相似以实现图像平滑任务。最后通过各个算法的实验对比验证,基于LLE的边缘保持图像平滑算法能在实现图像边缘保持平滑的同时,保留图像局部结构特征,并有效避免区域内颜色一致导致的边缘阶梯状现象,避免图像颜色失真。展开更多
经典LLE(Locally Linear Embedding)通过流形学习,能够得到嵌入在高维空间的低维流形.但是它与Isomap、Lapla-cian Eigenmaps一样,学习过程中没有用到先验知识.本文改进了LLE方法,充分利用先验类别信息,能够找到从高维空间到低维空间更...经典LLE(Locally Linear Embedding)通过流形学习,能够得到嵌入在高维空间的低维流形.但是它与Isomap、Lapla-cian Eigenmaps一样,学习过程中没有用到先验知识.本文改进了LLE方法,充分利用先验类别信息,能够找到从高维空间到低维空间更为合理的映射.最终使用一种线性近似的方法学习这种映射的显示表达.通过这种映射,可以比较好地解决人脸识别中的姿态问题.在FERET数据库上,当姿态变化从-60度到+60度,该方法达到了较高的识别率.展开更多
针对处理肿瘤基因表达数据特征选择问题,提出了一种特征选择方法 LLE Score.该方法是典型的过滤器类型特征选择方法,在样本类别信息的基础上,LLE Score针对特征向量的局部邻域保存能力进行评价,并且根据评价结果进行特征的选取,以此达...针对处理肿瘤基因表达数据特征选择问题,提出了一种特征选择方法 LLE Score.该方法是典型的过滤器类型特征选择方法,在样本类别信息的基础上,LLE Score针对特征向量的局部邻域保存能力进行评价,并且根据评价结果进行特征的选取,以此达到良好的特征选择效果.在实验部分对肿瘤数据集进行特征选择,并采用支持向量机分类器计算分类准确率.通过分类准确率说明了该方法的有效性.展开更多
在气体绝缘组合电器(gas insulated switchgear,GIS)实体模型中分别放置了针-板、悬浮金属颗粒和绝缘子表面固定金属颗粒放电模型,用超声波传感器采集到其放电波形。对放电波形提取的特征向量进行局部线性嵌入(local linear embedding,L...在气体绝缘组合电器(gas insulated switchgear,GIS)实体模型中分别放置了针-板、悬浮金属颗粒和绝缘子表面固定金属颗粒放电模型,用超声波传感器采集到其放电波形。对放电波形提取的特征向量进行局部线性嵌入(local linear embedding,LLE)算法降维处理,用降维后的向量作为输入对BP_Adaboost分类器进行训练和测试类型识别。识别结果表明,用这样方法进行GIS绝缘缺陷类型识别可以在减少计算量的同时保持较高的识别率,说明了其在局部放电模式识别应用中的有效性。展开更多
局部线性嵌入法(locally linear embedding,LLE)是一种典型的流形学习算法。在分析LLE算法的基本计算思路的基础上,提出了一种基于最佳分类效果的k和d综合参数选择方法。此方法综合考虑了故障类内和类间的离散度,并以此作为LLE算法特征...局部线性嵌入法(locally linear embedding,LLE)是一种典型的流形学习算法。在分析LLE算法的基本计算思路的基础上,提出了一种基于最佳分类效果的k和d综合参数选择方法。此方法综合考虑了故障类内和类间的离散度,并以此作为LLE算法特征压缩效果的评价依据。根据LLE算法的局部线性特征保持的基本特点,提出了一种增量式LLE算法用于柴油机机械故障特征压缩与诊断中。以平均子带能量法构造特征向量空间,子带数目的确定以同种故障类型特征参数间方差最小为准则。实验中,分别使用基于最佳参数选择的LLE算法、传统的主成分分析(principal component analysis,PCA)、增量式LLE算法对柴油机特征向量进行压缩,并对这三种算法的特征压缩结果运用K近邻算法(K-nearest neighborm,KNN)进行故障诊断与分类。结果表明基于最佳参数选择的LLE算法的诊断分类效果要优于传统的PCA方法,增量式LLE算法也取得良好的分类效果。实验表明,对LLE算法进行有关改进可以很好地应用到机械故障特征压缩与诊断中。展开更多
文摘针对实际工业生产过程中数据的非线性、高维度等特征导致的故障特征难以提取、故障诊断率低的问题,提出将双局部近邻标准化(Double Local Neighborhood Standardization,DLNS)与局部线性嵌入(LLE)相结合进行故障特征提取,并使用霜冰优化算法(RIME)对最小二乘支持向量机(LSSVM)进行参数优化的故障诊断方法。首先利用DLNS对数据进行预处理,然后使用LLE方法对数据进行降维重构以提取故障特征,其次,利用RIME算法对LSSVM的惩罚因子与核参数进行寻优,以获取最优的LSSVM模型用于故障诊断。最后将所提方法应用于田纳西-伊斯曼过程(TE)进行仿真实验。实验结果表明,所提方法能够有效提高故障诊断的诊断效果,验证了其在实际应用中的有效性。
文摘现有全局优化算法都使用不同范数约束输出图像梯度来实现图像平滑,但会牺牲图像中的弱结构信息来达到较好的平滑性能,导致输出图像出现颜色失真和细节模糊的情况。针对上述问题,提出一种基于LLE的边缘保持图像平滑算法(edge preserving image smoothing algorithm based on LLE,Ep-LLE),引入局部线性嵌入(LLE)的思想作为优化函数的正则化项并采用L_(2)范数进行惩罚。该方法利用图像局部区域内像素存在的相互关系,通过约束局部相似以实现图像平滑任务。最后通过各个算法的实验对比验证,基于LLE的边缘保持图像平滑算法能在实现图像边缘保持平滑的同时,保留图像局部结构特征,并有效避免区域内颜色一致导致的边缘阶梯状现象,避免图像颜色失真。
文摘经典LLE(Locally Linear Embedding)通过流形学习,能够得到嵌入在高维空间的低维流形.但是它与Isomap、Lapla-cian Eigenmaps一样,学习过程中没有用到先验知识.本文改进了LLE方法,充分利用先验类别信息,能够找到从高维空间到低维空间更为合理的映射.最终使用一种线性近似的方法学习这种映射的显示表达.通过这种映射,可以比较好地解决人脸识别中的姿态问题.在FERET数据库上,当姿态变化从-60度到+60度,该方法达到了较高的识别率.
文摘针对处理肿瘤基因表达数据特征选择问题,提出了一种特征选择方法 LLE Score.该方法是典型的过滤器类型特征选择方法,在样本类别信息的基础上,LLE Score针对特征向量的局部邻域保存能力进行评价,并且根据评价结果进行特征的选取,以此达到良好的特征选择效果.在实验部分对肿瘤数据集进行特征选择,并采用支持向量机分类器计算分类准确率.通过分类准确率说明了该方法的有效性.
文摘在气体绝缘组合电器(gas insulated switchgear,GIS)实体模型中分别放置了针-板、悬浮金属颗粒和绝缘子表面固定金属颗粒放电模型,用超声波传感器采集到其放电波形。对放电波形提取的特征向量进行局部线性嵌入(local linear embedding,LLE)算法降维处理,用降维后的向量作为输入对BP_Adaboost分类器进行训练和测试类型识别。识别结果表明,用这样方法进行GIS绝缘缺陷类型识别可以在减少计算量的同时保持较高的识别率,说明了其在局部放电模式识别应用中的有效性。