In this work, some important factors such as ceramic shell strength, heat preservation temperature, standing time and withdrawal rate, which influence the formability of directionally solidified large-size blades of h...In this work, some important factors such as ceramic shell strength, heat preservation temperature, standing time and withdrawal rate, which influence the formability of directionally solidified large-size blades of heavy-duty gas turbine with the liquid metal cooling(LMC) process, were studied through the method of microstructure analysis combining. The results show that the ceramic shell with medium strength(the high temperature flexural strength is 8 MPa, the flexural strength after thermal shock resistance is 12 MPa and the residual flexural strength is 20 MPa) can prevent the rupture and runout of the blade. The appropriate temperature(1,520 ℃ for upper region and 1,500 ℃ for lower region) of the heating furnace can eliminate the wide-angle grain boundary, the deviation of grain and the run-out caused by the shell crack. The holding time after pouring(3-5 min) can promote the growth of competitive grains and avoid a great deviation of columnar grains along the crystal orientation <001>, resulting in a straight and uniform grain structure. In addition, to avoid the formation of wrinkles and to ensure a smooth blade surface, the withdrawal rate should be no greater than the growth rate of grain. It is also found that the dendritic space of the blade decreases with the rise of solidification rate, and increases with the enlarging distance between the solidification position and the chill plate.展开更多
The simulation models of the thermal and macrostructural evolutions during directional solidification of Ni-base single crystal(SX) turbine blades under high rate solidification(HRS) and liquid metal cooling(LMC) have...The simulation models of the thermal and macrostructural evolutions during directional solidification of Ni-base single crystal(SX) turbine blades under high rate solidification(HRS) and liquid metal cooling(LMC) have been constructed using Pro CAST software, coupled with a 3D Cellular Automaton Finite Element(CAFE) model. The models were used to investigate the tendencies of stray grain(SG) formation in the platform region of turbine blades fabricated by HRS and LMC techniques. The results reveal that the LMC technique can prohibit SG formation by smoothing the concaved isotherm and in turn alleviating the undercooling in the platform ends to let the dendrites fill up the undercooled zone before SG nucleation. The simulation results agreed well with the experimental results, indicating that these models could be used to analyze the macrostructural evolution or to optimize process parameters to suppress SG formation. Using these models, the critical withdrawal rate for casting SX turbine blades without SG formation were determined to be around 75 μm·s^(-1) and 100 μm·s^(-1) for HRS and LMC respectively, suggesting that LMC can be used as an efficient technique in fabricating SX turbine blades without any SG defect formation.展开更多
This study on the effects of low molecular weight chitosan (LMC- 1) and shrimp preserving agentssuch as phytic acid (PA), sodium bisulfite (SB), and crustacean preservative (CP) on the preservation ofshrimp (Trachypen...This study on the effects of low molecular weight chitosan (LMC- 1) and shrimp preserving agentssuch as phytic acid (PA), sodium bisulfite (SB), and crustacean preservative (CP) on the preservation ofshrimp (Trachypenaeus curvirostris) and the bacteriostasis of LMC-1 showed that: (1) Different LMC-1conontration has different bacteriostasis on E. coIi, B. subtilis and S. aureou: (2) LMC-1 and CP arebetter than PA and SB for preserving the freshness of shrimp stored at 4℃.展开更多
The left multiplicative continuous compactification is the universal semigroup compactification of a semitopological semigroup.In this paper an internal construction of a quotient space of the left multiplicative cont...The left multiplicative continuous compactification is the universal semigroup compactification of a semitopological semigroup.In this paper an internal construction of a quotient space of the left multiplicative continuous compactification of a semitopological semigroup is constructed as a space of z-filters展开更多
基金financially supported by the National Science and Technology Major Project of High-end CNC Machine Tools and Basic Manufacturing Equipment(No.2017ZX04014001)
文摘In this work, some important factors such as ceramic shell strength, heat preservation temperature, standing time and withdrawal rate, which influence the formability of directionally solidified large-size blades of heavy-duty gas turbine with the liquid metal cooling(LMC) process, were studied through the method of microstructure analysis combining. The results show that the ceramic shell with medium strength(the high temperature flexural strength is 8 MPa, the flexural strength after thermal shock resistance is 12 MPa and the residual flexural strength is 20 MPa) can prevent the rupture and runout of the blade. The appropriate temperature(1,520 ℃ for upper region and 1,500 ℃ for lower region) of the heating furnace can eliminate the wide-angle grain boundary, the deviation of grain and the run-out caused by the shell crack. The holding time after pouring(3-5 min) can promote the growth of competitive grains and avoid a great deviation of columnar grains along the crystal orientation <001>, resulting in a straight and uniform grain structure. In addition, to avoid the formation of wrinkles and to ensure a smooth blade surface, the withdrawal rate should be no greater than the growth rate of grain. It is also found that the dendritic space of the blade decreases with the rise of solidification rate, and increases with the enlarging distance between the solidification position and the chill plate.
基金financially supported by the National Key Research and Development Program(2016YFB0701405)the National 973 Program(2011CB610406)+4 种基金National 863 Project(2012AA03A511)the National Natural Science Foundation of China(51171151,51331005,51501151,51631008)the Natural Science Foundation of Shaanxi Province(2014JM6227)the Aeronautical Science Foundation of China(2015ZE53059)the Fund of the State Key Laboratory of Solidification Processing in NWPU(SKLSP201411)
文摘The simulation models of the thermal and macrostructural evolutions during directional solidification of Ni-base single crystal(SX) turbine blades under high rate solidification(HRS) and liquid metal cooling(LMC) have been constructed using Pro CAST software, coupled with a 3D Cellular Automaton Finite Element(CAFE) model. The models were used to investigate the tendencies of stray grain(SG) formation in the platform region of turbine blades fabricated by HRS and LMC techniques. The results reveal that the LMC technique can prohibit SG formation by smoothing the concaved isotherm and in turn alleviating the undercooling in the platform ends to let the dendrites fill up the undercooled zone before SG nucleation. The simulation results agreed well with the experimental results, indicating that these models could be used to analyze the macrostructural evolution or to optimize process parameters to suppress SG formation. Using these models, the critical withdrawal rate for casting SX turbine blades without SG formation were determined to be around 75 μm·s^(-1) and 100 μm·s^(-1) for HRS and LMC respectively, suggesting that LMC can be used as an efficient technique in fabricating SX turbine blades without any SG defect formation.
文摘This study on the effects of low molecular weight chitosan (LMC- 1) and shrimp preserving agentssuch as phytic acid (PA), sodium bisulfite (SB), and crustacean preservative (CP) on the preservation ofshrimp (Trachypenaeus curvirostris) and the bacteriostasis of LMC-1 showed that: (1) Different LMC-1conontration has different bacteriostasis on E. coIi, B. subtilis and S. aureou: (2) LMC-1 and CP arebetter than PA and SB for preserving the freshness of shrimp stored at 4℃.
文摘The left multiplicative continuous compactification is the universal semigroup compactification of a semitopological semigroup.In this paper an internal construction of a quotient space of the left multiplicative continuous compactification of a semitopological semigroup is constructed as a space of z-filters