Using a special TEM constant deflection device, the change in dislocation configuration ahead of a loaded crack tip before and after adsorption of Hg atoms and the initiation of liquid metal-induced nanocracks (LMIC) ...Using a special TEM constant deflection device, the change in dislocation configuration ahead of a loaded crack tip before and after adsorption of Hg atoms and the initiation of liquid metal-induced nanocracks (LMIC) have been observed. The results show that chemisorption of Hg atoms can facilitate dislocation emission, multiplication and motion. Nanocracks will be initiated in the dislocation-free zone (DFZ) or at the crack tip when chemisorption-facilitated dislocation emission, multiplication and motion reach a critical condition. On the basis of the available experimental evidence concerning liquid metal embnttlement (LME), a new mechanism for this phenomenon is considered. This involves the fact that the decrease in surface energy induced by chemisorption of Hg atoms results in a reduction in the critical stress intensity factors for dislocation emission and the resistance for dislocation motion. On the other hand, the plastic work and KIC will decrease with the decrease in the surface energy.展开更多
基金Project supported by the National Natural Science Foundation of China.
文摘Using a special TEM constant deflection device, the change in dislocation configuration ahead of a loaded crack tip before and after adsorption of Hg atoms and the initiation of liquid metal-induced nanocracks (LMIC) have been observed. The results show that chemisorption of Hg atoms can facilitate dislocation emission, multiplication and motion. Nanocracks will be initiated in the dislocation-free zone (DFZ) or at the crack tip when chemisorption-facilitated dislocation emission, multiplication and motion reach a critical condition. On the basis of the available experimental evidence concerning liquid metal embnttlement (LME), a new mechanism for this phenomenon is considered. This involves the fact that the decrease in surface energy induced by chemisorption of Hg atoms results in a reduction in the critical stress intensity factors for dislocation emission and the resistance for dislocation motion. On the other hand, the plastic work and KIC will decrease with the decrease in the surface energy.