The design and development of a cryogenic Ultra-Low-Noise Signal Amplification (ULNA) and detection system for spectroscopy of ultra-cold systems are reported here for the operation in the 0.5 - 4 GHz spectrum of freq...The design and development of a cryogenic Ultra-Low-Noise Signal Amplification (ULNA) and detection system for spectroscopy of ultra-cold systems are reported here for the operation in the 0.5 - 4 GHz spectrum of frequencies (the “L” and “S” microwave bands). The design is suitable for weak RF signal detection and spectroscopy from ultra-cold systems confined in cryogenic RF cavities, as entailed in a number of physics, physical chemistry and analytical chemistry applications, such as NMR/NQR/EPR and microwave spectroscopy, Paul traps, Bose-Einstein Condensates (BEC’s) and cavity Quantum Electrodynamics (cQED). Using a generic Low-Noise Amplifier (LNA) architecture for a GaAs enhancement mode High-Electron Mobility FET device, our design has especially been devised for scientific applications where ultra-low-noise amplification systems are sought to amplify and detect weak RF signals under various conditions and environments, including cryogenic temperatures, with the least possible noise susceptibility. The amplifier offers a 16 dB gain and a 0.8 dB noise figure at 2.5 GHz, while operating at room temperature, which can improve significantly at low temperatures. Both dc and RF outputs are provided by the amplifier to integrate it in a closed-loop or continuous-wave spectroscopy system or connect it to a variety of instruments, a factor which is lacking in commercial LNA devices. Following the amplification stage, the RF signal detection is carried out with the help of a post-amplifier and detection system based upon a set of Zero-Bias Schottky Barrier Diodes (ZBD’s) and a high-precision ultra-low noise jFET operational amplifier. The scheme offers unique benefits of sensitive detection and very-low noise amplification for measuring extremely weak on-resonance signals with substantial low- noise response and excellent stability while eliminating complicated and expensive heterodyne schemes. The LNA stage is fully capable to be a part of low-temperature experiments while being operated in cryogenic conditions down to about 500 mK.展开更多
The paper presents a fully integrated ultra-wide band(UWB)low noise amplifier(LNA)for 3-10 GHz applications.It employs self-biased resistive-feedback and current-reused technique to achieve wide input matching and low...The paper presents a fully integrated ultra-wide band(UWB)low noise amplifier(LNA)for 3-10 GHz applications.It employs self-biased resistive-feedback and current-reused technique to achieve wide input matching and low power characteristics.An improved biased architecture is adopted in the second stage to attain a better gain-compensation performance.The design is verified with TSMC standard 1 P6 M 0.18μm RF CMOS process.The measurement results show that the parasitic problem of the transistors at high frequencies is solved.A high and flat S21 of 9.7±1.5 dB and the lowest NF 3.5 dB are achieved in the desired frequency band.The power consumption is only 7.5 mA under 1.6 V supply.The proposed LNA achieves broadband flat gain,low noise,and high linearity performance simultaneously,allowing it to be used in 3-10 GHz UWB applications.展开更多
A 4.1 GHz two-stage cascode Low-Noise Amplifier(LNA) with Electro-Static Discharge(ESD) protection is presented in this paper.The LNA has been optimized using ESD and LNA co-design methodology to achieve a good perfor...A 4.1 GHz two-stage cascode Low-Noise Amplifier(LNA) with Electro-Static Discharge(ESD) protection is presented in this paper.The LNA has been optimized using ESD and LNA co-design methodology to achieve a good performance.Post-layout simulation results exhibit a forward gain(S21) of about 21 dB, a reverse isolation(S12) of less than-18 dB, an input return loss(S11) of less than-16 dB, and an output return loss(S22) of less than-17 dB.Moreover, the Noise Figure(NF) is 2.6 dB.This design is implemented in TSMC0.18μm RF CMOS technology and the die area is 0.9 mm×0.9 mm.展开更多
Low noise amplifier (LNA) performs as the initial amplification block in the receive path in a radio frequency (RF) receiver. In this work an ultra-wideband 3.1 10.6-GHz LNA is discussed. By using the proposed circuit...Low noise amplifier (LNA) performs as the initial amplification block in the receive path in a radio frequency (RF) receiver. In this work an ultra-wideband 3.1 10.6-GHz LNA is discussed. By using the proposed circuits for RF CMOS LNA and design methodology, the noise from the device is decreased across the ultra wide band (UWB) band. The measured noise figure is 2.66 3 dB over 3.1 10.6-GHz, while the power gain is 14 ± 0.8 dB. It consumes 23.7 mW from a 1.8 V supply. The input and output return losses (S11 & S22) are less than –11 dB over the UWB band. By using the modified derivative superposition method, the third-order intercept point IIP3 is improved noticeably. The complete circuit is based on the 0.18 μm standard RFCMOS technology and simulated with Hspice simulator.展开更多
Backscatter communications will play an important role in connecting everything for beyond 5G(B5G)and 6G systems.One open challenge for backscatter communications is that the signals suffer a round-trip path loss so t...Backscatter communications will play an important role in connecting everything for beyond 5G(B5G)and 6G systems.One open challenge for backscatter communications is that the signals suffer a round-trip path loss so that the communication distance is short.In this paper,we first calculate the communication distance upper bounds for both uplink and downlink by measuring the tag sensitivity and reflection coefficient.It is found that the activation voltage of the envelope detection diode of the downlink tag is the main factor limiting the back-scatter communication distance.Based on this analysis,we then propose to implement a low-noise amplifier(LNA)module before the envelope detection at the tag to enhance the incident signal strength.Our experimental results on the hardware platform show that our method can increase the downlink communication range by nearly 20 m.展开更多
We propose an ultrabroad-band 1R regenerator utilizing a multi-section quantum-dot semiconductor optical amplifier. Due to the reduced electron states, quantum dot is beneficial in broadening the gain spectrum and low...We propose an ultrabroad-band 1R regenerator utilizing a multi-section quantum-dot semiconductor optical amplifier. Due to the reduced electron states, quantum dot is beneficial in broadening the gain spectrum and lowering the noise figure. Combining this with a multi-section structure drastically improves the gain equality among the different bound states, leading to an increase in the maximum output power and an improvement of the noise figure.展开更多
The S parameter expression of high-frequency models of the high electron mobility transistors (HEMTs) with basic feedback structure,especially the transmission gain S 21,is presented and analyzed.In addition,an improv...The S parameter expression of high-frequency models of the high electron mobility transistors (HEMTs) with basic feedback structure,especially the transmission gain S 21,is presented and analyzed.In addition,an improved feedback structure and its theory are proposed and demonstrated,in order to obtain a better gain-flatness through the mutual interaction between the series inductor and the parallel capacitor in the feedback loop.The optimization solution for the feedback amplifier can eliminate the negative impacts on transmission gain S 21 caused by things such as resonance peaks.Furthermore,our theory covers the shortage of conventional feedback amplifiers,to some extent.A wideband low-noise amplifier (LNA) with the improved feedback tech-nology is designed based on HEMT.The transmission gain is about 20 dB with the gain variation of 1.2 dB from 100 MHz to 6 GHz.The noise figure is lower than 2.8 dB in the whole band and the amplifier is unconditionally stable.展开更多
Electrostatic discharge (ESD) induced parasitic effects have serious impacts on performance of radio frequency (RF) integrated circuits (IC). This paper discusses a comprehensive noise analysis procedure for ESD...Electrostatic discharge (ESD) induced parasitic effects have serious impacts on performance of radio frequency (RF) integrated circuits (IC). This paper discusses a comprehensive noise analysis procedure for ESD protection structures and their negative influences on RF ICs. Noise figures (NFs) of commonly used ESD protection structures and their impacts on a single-chip 5.5 GHz low-noise amplifier (LNA) circuit were depicted. A design example in 0.18 μm SiGe BiCMOS was presented. Measurement results confirm that significant noise degradation occurs in the LNA circuit due to ESD-induced noise effects. A practical design procedure for ESD-protected RF ICs is provided for real-world RF IC optimization.展开更多
The most important aim of nanotechnology development is to construct atomic-scale devices, and those atomic-scale devices are required to use some measurements that have ability to control and build in the range of th...The most important aim of nanotechnology development is to construct atomic-scale devices, and those atomic-scale devices are required to use some measurements that have ability to control and build in the range of these dimensions. A method based on super- heterodyne interferometers can be used to access the measurements in nano-scale. One of the most important limitations to increase the resolution of the displacement measurement is nonlinearity error. According to the base and measurement signals received by optical section of super-heterodyne interferometer, it is necessary for circuits to reconstruct and detect corresponding phase with target displacement. In this paper, we designed, simulated, and implemented the circuits required for electronic part of interferometer by complementary metal-oxide-semicon- ductor (CMOS) 0.5 ~tm technology. These circuits included cascade low-noise amplifiers (LNA) with 19.1 dB gain and 2.5dB noise figure (NF) at 500MHz frequency, band-pass filters with 500MHz central fre- quency and 400 kHz bandwidth, double-balanced mixers with 233/0.6pm ratio for metal-oxide-semiconductor field-effect transistors (MOSFETs), and low-pass filters with 300 kHz cutoff frequency. The experimental results show that the amplifiers have 19.41 dB gain and 2.7 dB noise factor, mixers have the ratio of radio frequency to local oscillator (RF/LO) range between 80 and 2500 MHz with intermediate frequency (IF) range between DC to 1000 MHz, and the digital phase measurement circuit based on the time-to-digital converter (TDC) has a nanosecond resolution.展开更多
文摘The design and development of a cryogenic Ultra-Low-Noise Signal Amplification (ULNA) and detection system for spectroscopy of ultra-cold systems are reported here for the operation in the 0.5 - 4 GHz spectrum of frequencies (the “L” and “S” microwave bands). The design is suitable for weak RF signal detection and spectroscopy from ultra-cold systems confined in cryogenic RF cavities, as entailed in a number of physics, physical chemistry and analytical chemistry applications, such as NMR/NQR/EPR and microwave spectroscopy, Paul traps, Bose-Einstein Condensates (BEC’s) and cavity Quantum Electrodynamics (cQED). Using a generic Low-Noise Amplifier (LNA) architecture for a GaAs enhancement mode High-Electron Mobility FET device, our design has especially been devised for scientific applications where ultra-low-noise amplification systems are sought to amplify and detect weak RF signals under various conditions and environments, including cryogenic temperatures, with the least possible noise susceptibility. The amplifier offers a 16 dB gain and a 0.8 dB noise figure at 2.5 GHz, while operating at room temperature, which can improve significantly at low temperatures. Both dc and RF outputs are provided by the amplifier to integrate it in a closed-loop or continuous-wave spectroscopy system or connect it to a variety of instruments, a factor which is lacking in commercial LNA devices. Following the amplification stage, the RF signal detection is carried out with the help of a post-amplifier and detection system based upon a set of Zero-Bias Schottky Barrier Diodes (ZBD’s) and a high-precision ultra-low noise jFET operational amplifier. The scheme offers unique benefits of sensitive detection and very-low noise amplification for measuring extremely weak on-resonance signals with substantial low- noise response and excellent stability while eliminating complicated and expensive heterodyne schemes. The LNA stage is fully capable to be a part of low-temperature experiments while being operated in cryogenic conditions down to about 500 mK.
基金Supported by the National Natural Science Foundation of China(No.61534003,61874024,61871116)
文摘The paper presents a fully integrated ultra-wide band(UWB)low noise amplifier(LNA)for 3-10 GHz applications.It employs self-biased resistive-feedback and current-reused technique to achieve wide input matching and low power characteristics.An improved biased architecture is adopted in the second stage to attain a better gain-compensation performance.The design is verified with TSMC standard 1 P6 M 0.18μm RF CMOS process.The measurement results show that the parasitic problem of the transistors at high frequencies is solved.A high and flat S21 of 9.7±1.5 dB and the lowest NF 3.5 dB are achieved in the desired frequency band.The power consumption is only 7.5 mA under 1.6 V supply.The proposed LNA achieves broadband flat gain,low noise,and high linearity performance simultaneously,allowing it to be used in 3-10 GHz UWB applications.
文摘A 4.1 GHz two-stage cascode Low-Noise Amplifier(LNA) with Electro-Static Discharge(ESD) protection is presented in this paper.The LNA has been optimized using ESD and LNA co-design methodology to achieve a good performance.Post-layout simulation results exhibit a forward gain(S21) of about 21 dB, a reverse isolation(S12) of less than-18 dB, an input return loss(S11) of less than-16 dB, and an output return loss(S22) of less than-17 dB.Moreover, the Noise Figure(NF) is 2.6 dB.This design is implemented in TSMC0.18μm RF CMOS technology and the die area is 0.9 mm×0.9 mm.
文摘Low noise amplifier (LNA) performs as the initial amplification block in the receive path in a radio frequency (RF) receiver. In this work an ultra-wideband 3.1 10.6-GHz LNA is discussed. By using the proposed circuits for RF CMOS LNA and design methodology, the noise from the device is decreased across the ultra wide band (UWB) band. The measured noise figure is 2.66 3 dB over 3.1 10.6-GHz, while the power gain is 14 ± 0.8 dB. It consumes 23.7 mW from a 1.8 V supply. The input and output return losses (S11 & S22) are less than –11 dB over the UWB band. By using the modified derivative superposition method, the third-order intercept point IIP3 is improved noticeably. The complete circuit is based on the 0.18 μm standard RFCMOS technology and simulated with Hspice simulator.
基金supported in part by National Natural Science Foundation of China under Grant Nos.61971029 and U22B2004in part by Beijing Municipal Natural Science Foundation under Grant No.L222002.
文摘Backscatter communications will play an important role in connecting everything for beyond 5G(B5G)and 6G systems.One open challenge for backscatter communications is that the signals suffer a round-trip path loss so that the communication distance is short.In this paper,we first calculate the communication distance upper bounds for both uplink and downlink by measuring the tag sensitivity and reflection coefficient.It is found that the activation voltage of the envelope detection diode of the downlink tag is the main factor limiting the back-scatter communication distance.Based on this analysis,we then propose to implement a low-noise amplifier(LNA)module before the envelope detection at the tag to enhance the incident signal strength.Our experimental results on the hardware platform show that our method can increase the downlink communication range by nearly 20 m.
文摘We propose an ultrabroad-band 1R regenerator utilizing a multi-section quantum-dot semiconductor optical amplifier. Due to the reduced electron states, quantum dot is beneficial in broadening the gain spectrum and lowering the noise figure. Combining this with a multi-section structure drastically improves the gain equality among the different bound states, leading to an increase in the maximum output power and an improvement of the noise figure.
基金supported by the Guangdong Key Technologies R & D Program (No.2007B010400009)the Guangzhou Science and Technology Pillar Program (No.2008Z1-D501),China
文摘The S parameter expression of high-frequency models of the high electron mobility transistors (HEMTs) with basic feedback structure,especially the transmission gain S 21,is presented and analyzed.In addition,an improved feedback structure and its theory are proposed and demonstrated,in order to obtain a better gain-flatness through the mutual interaction between the series inductor and the parallel capacitor in the feedback loop.The optimization solution for the feedback amplifier can eliminate the negative impacts on transmission gain S 21 caused by things such as resonance peaks.Furthermore,our theory covers the shortage of conventional feedback amplifiers,to some extent.A wideband low-noise amplifier (LNA) with the improved feedback tech-nology is designed based on HEMT.The transmission gain is about 20 dB with the gain variation of 1.2 dB from 100 MHz to 6 GHz.The noise figure is lower than 2.8 dB in the whole band and the amplifier is unconditionally stable.
文摘Electrostatic discharge (ESD) induced parasitic effects have serious impacts on performance of radio frequency (RF) integrated circuits (IC). This paper discusses a comprehensive noise analysis procedure for ESD protection structures and their negative influences on RF ICs. Noise figures (NFs) of commonly used ESD protection structures and their impacts on a single-chip 5.5 GHz low-noise amplifier (LNA) circuit were depicted. A design example in 0.18 μm SiGe BiCMOS was presented. Measurement results confirm that significant noise degradation occurs in the LNA circuit due to ESD-induced noise effects. A practical design procedure for ESD-protected RF ICs is provided for real-world RF IC optimization.
文摘The most important aim of nanotechnology development is to construct atomic-scale devices, and those atomic-scale devices are required to use some measurements that have ability to control and build in the range of these dimensions. A method based on super- heterodyne interferometers can be used to access the measurements in nano-scale. One of the most important limitations to increase the resolution of the displacement measurement is nonlinearity error. According to the base and measurement signals received by optical section of super-heterodyne interferometer, it is necessary for circuits to reconstruct and detect corresponding phase with target displacement. In this paper, we designed, simulated, and implemented the circuits required for electronic part of interferometer by complementary metal-oxide-semicon- ductor (CMOS) 0.5 ~tm technology. These circuits included cascade low-noise amplifiers (LNA) with 19.1 dB gain and 2.5dB noise figure (NF) at 500MHz frequency, band-pass filters with 500MHz central fre- quency and 400 kHz bandwidth, double-balanced mixers with 233/0.6pm ratio for metal-oxide-semiconductor field-effect transistors (MOSFETs), and low-pass filters with 300 kHz cutoff frequency. The experimental results show that the amplifiers have 19.41 dB gain and 2.7 dB noise factor, mixers have the ratio of radio frequency to local oscillator (RF/LO) range between 80 and 2500 MHz with intermediate frequency (IF) range between DC to 1000 MHz, and the digital phase measurement circuit based on the time-to-digital converter (TDC) has a nanosecond resolution.