Aiming to deal with the difficult issues of terrain data model simplification and crack disposal,the paper proposed an improved level of detail(LOD)terrain rendering algorithm,in which a variation coefficient of eleva...Aiming to deal with the difficult issues of terrain data model simplification and crack disposal,the paper proposed an improved level of detail(LOD)terrain rendering algorithm,in which a variation coefficient of elevation is introduced to express the undulation of topography.Then the coefficient is used to construct a node evaluation function in the terrain data model simplification step.Furthermore,an edge reduction strategy is combined with the improved restrictive quadtree segmentation to handle the crack problem.The experiment results demonstrated that the proposed method can reduce the amount of rendering triangles and enhance the rendering speed on the premise of ensuring the rendering effect compared with a traditional LOD algorithm.展开更多
A novel approach that integrates occlusion culling within the view-dependent rendering framework is proposed. The algorithm uses the prioritized-layered projection(PLP) algorithm to occlude those obscured objects, a...A novel approach that integrates occlusion culling within the view-dependent rendering framework is proposed. The algorithm uses the prioritized-layered projection(PLP) algorithm to occlude those obscured objects, and uses an approximate visibility technique to accurately and efficiently determine which objects will be visible in the coming future and prefetch those objects from disk before they are rendered, view-dependent rendering technique provides the ability to change level of detail over the surface seamlessly and smoothly in real-time according to cell solidity value.展开更多
基金Supported by the National Natural Science Foundation of China(61363075)the National High Technology Research and Development Program of China(863 Program)(2012AA12A308)the Yue Qi Young Scholars Program of China University of Mining&Technology,Beijing(800015Z1117)
文摘Aiming to deal with the difficult issues of terrain data model simplification and crack disposal,the paper proposed an improved level of detail(LOD)terrain rendering algorithm,in which a variation coefficient of elevation is introduced to express the undulation of topography.Then the coefficient is used to construct a node evaluation function in the terrain data model simplification step.Furthermore,an edge reduction strategy is combined with the improved restrictive quadtree segmentation to handle the crack problem.The experiment results demonstrated that the proposed method can reduce the amount of rendering triangles and enhance the rendering speed on the premise of ensuring the rendering effect compared with a traditional LOD algorithm.
文摘A novel approach that integrates occlusion culling within the view-dependent rendering framework is proposed. The algorithm uses the prioritized-layered projection(PLP) algorithm to occlude those obscured objects, and uses an approximate visibility technique to accurately and efficiently determine which objects will be visible in the coming future and prefetch those objects from disk before they are rendered, view-dependent rendering technique provides the ability to change level of detail over the surface seamlessly and smoothly in real-time according to cell solidity value.