期刊文献+
共找到117,065篇文章
< 1 2 250 >
每页显示 20 50 100
New Exact Solutions to Dispersive Long-Wave Equations in (2+1)-Dimensional Space 被引量:2
1
作者 TIAN Ying-Hui CHEN Han-Lin LIU Xi-Qiang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第2期207-210,共4页
New exact solutions expressed by the Jacobi elliptic functions are obtained to the (2+1)-dimensional dispersive long-wave equations by using the modified F-expansion method. In the limit case, new solitary wave sol... New exact solutions expressed by the Jacobi elliptic functions are obtained to the (2+1)-dimensional dispersive long-wave equations by using the modified F-expansion method. In the limit case, new solitary wave solutions and triangular periodic wave solutions are obtained as well. 展开更多
关键词 dispersive long-wave equations modified F-expansion method exact solutions Jacobi elliptic functions
下载PDF
Symmetry Groups and New Exact Solutions of(2+1)-Dimensional Dispersive Long-Wave Equations
2
作者 TIAN Ying-Hui CHEN Han-Lin LIU Xi-Qiang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第5期781-784,共4页
Using the modified CK's direct method, we derive a symmetry group theorem of (2+1)-dimensional dispersive long-wave equations. Based upon the theorem, Lie point symmetry groups and new exact solutions of (2+1)-... Using the modified CK's direct method, we derive a symmetry group theorem of (2+1)-dimensional dispersive long-wave equations. Based upon the theorem, Lie point symmetry groups and new exact solutions of (2+1)- dimensional dispersive long-wave equations are obtained. 展开更多
关键词 (2+1)-dimensional dispersive long-wave equations exact solution modified CK's direct method symmetry groups
下载PDF
Multiple Soliton Solutions of the Dispersive Long-Wave Equations 被引量:2
3
作者 ZHANG Jie-fang 《Chinese Physics Letters》 SCIE CAS CSCD 1999年第1期4-5,共2页
Using a simple homogeneous balance method,which is very concise and primary,we find the multiple soliton solutions of the dispersive long-wave equations.The method can be generalized to deal with the higher dimensiona... Using a simple homogeneous balance method,which is very concise and primary,we find the multiple soliton solutions of the dispersive long-wave equations.The method can be generalized to deal with the higher dimensional dispersive long-wave equations and other class of nonlinear equation. 展开更多
关键词 equation. equations. DISPERSIVE
下载PDF
The Alternating Group Explicit Iterative Method for the Regularized Long-Wave Equation
4
作者 Anqi Xie Xiaojia Ye Guanyu Xue 《Journal of Applied Mathematics and Physics》 2024年第1期52-59,共8页
An Alternating Group Explicit (AGE) iterative method with intrinsic parallelism is constructed based on an implicit scheme for the Regularized Long-Wave (RLW) equation. The method can be used for the iteration solutio... An Alternating Group Explicit (AGE) iterative method with intrinsic parallelism is constructed based on an implicit scheme for the Regularized Long-Wave (RLW) equation. The method can be used for the iteration solution of a general tridiagonal system of equations with diagonal dominance. It is not only easy to implement, but also can directly carry out parallel computation. Convergence results are obtained by analysing the linear system. Numerical experiments show that the theory is accurate and the scheme is valid and reliable. 展开更多
关键词 RLW equation AGE Iterative Method PARALLELISM CONVERGENCE
下载PDF
Solitary Wave Solution of the Two-Dimensional Regularized Long-Wave and Davey-Stewartson Equations in Fluids and Plasmas 被引量:1
5
作者 Omar H. El-Kalaawy Rafat S. Ibrahim 《Applied Mathematics》 2012年第8期833-843,共11页
This paper investigates the solitary wave solutions of the (2+1)-dimensional regularized long-wave (2DRLG) equation which is arising in the investigation of the Rossby waves in rotating flows and the drift waves in pl... This paper investigates the solitary wave solutions of the (2+1)-dimensional regularized long-wave (2DRLG) equation which is arising in the investigation of the Rossby waves in rotating flows and the drift waves in plasmas and (2+1) dimensional Davey-Stewartson (DS) equation which is governing the dynamics of weakly nonlinear modulation of a lattice wave packet in a multidimensional lattice. By using extended mapping method technique, we have shown that the 2DRLG-2DDS equations can be reduced to the elliptic-like equation. Then, the extended mapping method is used to obtain a series of solutions including the single and the combined non degenerative Jacobi elliptic function solutions and their degenerative solutions to the above mentioned class of nonlinear partial differential equations (NLPDEs). 展开更多
关键词 Exact SOLITARY Solutions Extended Mapping Method Two Dimension REGULARIZED Long Wave and Da Vey-Stewartson equations JACOBI ELLIPTIC Functions
下载PDF
On similarity solutions to (2+1)-dispersive long-wave equations
6
作者 Raj Kumar Ravi Shankar Verma Atul Kumar Tiwari 《Journal of Ocean Engineering and Science》 SCIE 2023年第2期111-123,共13页
This work is devoted to get a new family of analytical solutions of the(2+1)-coupled dispersive long wave equations propagating in an infinitely long channel with constant depth,and can be observed in an open sea or i... This work is devoted to get a new family of analytical solutions of the(2+1)-coupled dispersive long wave equations propagating in an infinitely long channel with constant depth,and can be observed in an open sea or in wide channels.The solutions are obtained by using the invariance property of the similarity transformations method via one-parameter Lie group theory.The repeated use of the similarity transformations method can transform the system of PDEs into system of ODEs.Under adequate restrictions,the reduced system of ODEs is solved.Numerical simulation is performed to describe the solutions in a physically meaningful way.The profiles of the solutions are simulated by taking an appropriate choice of functions and constants involved therein.In each animation,a frame for dominated behavior is captured.They exhibit elastic multisolitons,single soliton,doubly solitons,stationary,kink and parabolic nature.The results are significant since these have confirmed some of the established results of S.Kumar et al.(2020)and K.Sharma et al.(2020).Some of their solutions can be deduced from the results derived in this work.Other results in the existing literature are different from those in this work. 展开更多
关键词 Dispersive long wave equations SOLITONS INVARIANTS Lie-group Similarity solutions
原文传递
Solitons and Waves in (2+l)-Dimensional Dispersive Long-Wave Equation 被引量:1
7
作者 MA Zheng-Yi LIU Yu-Lu +1 位作者 LU Zhi-Ming ZHENG Chun-Long2LU Zhi-Ming,1 and ZHENG Chun-Long 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第5X期799-803,共5页
For a higher-dimensional integrable nonlinear dynamical system, there are abundant coherent soliton excitations. With the aid of an improved projective Riccati equation approach, the paper obtains several types of exa... For a higher-dimensional integrable nonlinear dynamical system, there are abundant coherent soliton excitations. With the aid of an improved projective Riccati equation approach, the paper obtains several types of exact solutions to the (2+l)-dimenslonal dispersive long-wave equation, including multiple-soliton solutions, periodic soliton solutions, and Weierstrass function solutions. From these solutions, apart from several multisoliton excitations, we derive some novel features of wave structures by introducing some types of lower-dimensional patterns. 展开更多
关键词 (2+l)-dimensional dispersive long-wave equation projective Riccati equation approach soliton annihilation traveling wave
下载PDF
Some Modified Equations of the Sine-Hilbert Type
8
作者 闫铃娟 刘亚杰 胡星标 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第4期1-6,共6页
Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based... Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived. 展开更多
关键词 BILINEAR equations equatION
下载PDF
An Extended Numerical Method by Stancu Polynomials for Solution of Integro-Differential Equations Arising in Oscillating Magnetic Fields
9
作者 Neşe İşler Acar 《Advances in Pure Mathematics》 2024年第10期785-796,共12页
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b... In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method. 展开更多
关键词 Stancu Polynomials Collocation Method Integro-Differential equations Linear equation Systems Matrix equations
下载PDF
Matrix Riccati Equations in Optimal Control
10
作者 Malick Ndiaye 《Applied Mathematics》 2024年第3期199-213,共15页
In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied tho... In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control. 展开更多
关键词 Optimal Control Matrix Riccati equation Change of Variable
下载PDF
Analytical solutions fractional order partial differential equations arising in fluid dynamics
11
作者 Sidheswar Behera Jasvinder Singh Pal Virdi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第3期458-468,共11页
This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectio... This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB. 展开更多
关键词 the sine-cosine method He's fractional derivative analytical solution fractional Pade-Ⅱequation fractional generalized Zakharov equation
下载PDF
THE STABILITY OF BOUSSINESQ EQUATIONS WITH PARTIAL DISSIPATION AROUND THE HYDROSTATIC BALANCE
12
作者 Saiguo XU Zhong TAN 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1466-1486,共21页
This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Bouss... This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Boussinesq system focused on here is anisotropic,and involves only horizontal dissipation and thermal damping.In the 2D case R^(2),due to the lack of vertical dissipation,the stability and large-time behavior problems have remained open in a Sobolev setting.For the spatial domain T×R,this paper solves the stability problem and gives the precise large-time behavior of the perturbation.By decomposing the velocity u and temperatureθinto the horizontal average(ū,θ)and the corresponding oscillation(ū,θ),we can derive the global stability in H~2 and the exponential decay of(ū,θ)to zero in H^(1).Moreover,we also obtain that(ū_(2),θ)decays exponentially to zero in H^(1),and thatū_(1)decays exponentially toū_(1)(∞)in H^(1)as well;this reflects a strongly stratified phenomenon of buoyancy-driven fluids.In addition,we establish the global stability in H^(3)for the 3D case R^(3). 展开更多
关键词 Boussinesq equations partial dissipation stability DECAY
下载PDF
Kac-Moody-Virasoro Symmetry Algebra of (2+1)-Dimensional Dispersive Long-Wave Equation with Arbitrary Order Invariant
13
作者 张焕萍 李彪 陈勇 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第3期450-454,共5页
By Lie symmetry method, the Lie point symmetries and its Kac-Moody-Virasoro (KMV) symmetry algebra of (2+1)-dimensional dispersive long-wave equation (DLWE) are obtained, and the finite transformation of DLWE is given... By Lie symmetry method, the Lie point symmetries and its Kac-Moody-Virasoro (KMV) symmetry algebra of (2+1)-dimensional dispersive long-wave equation (DLWE) are obtained, and the finite transformation of DLWE is given by symmetry group direct method, which can recover Lie point symmetries. Then KMV symmetry algebra of DLWE with arbitrary order invariant is also obtained. On basis of this algebra the group invariant solutions and similarity reductions are also derived. 展开更多
关键词 Kac Moody Virasoro symmetry algebra dispersive long-wave equation symmetry reduction group invariant solutions
下载PDF
The Maxwell-Heaviside Equations Explained by the Theory of Informatons
14
作者 Antoine Acke 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期1003-1016,共14页
In the articles “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” and “The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons” the gravitatio... In the articles “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” and “The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons” the gravitational interaction has been explained by the hypothesis that information carried by informatons is the substance of gravitational fields, i.e. the medium that the interaction in question makes possible. From the idea that “information carried by informatons” is its substance, it has been deduced that—on the macroscopic level—a gravitational field manifests itself as a dual entity, always having a field- and an induction component (Egand Bg) simultaneously created by their common sources. In this article we will mathematically deduce the Maxwell-Heaviside equations from the kinematics of the informatons. These relations describe on the macroscopic level how a gravitational field (Eg, Bg) is generated by whether or not moving masses and how spatial and temporal changes of Egand Bgare related. We show that there is no causal link between Egand Bg. 展开更多
关键词 GRAVITY Gravitational Field Maxwell equations Informatons
下载PDF
THE SMOOTHING EFFECT IN SHARP GEVREY SPACE FOR THE SPATIALLY HOMOGENEOUS NON-CUTOFF BOLTZMANN EQUATIONS WITH A HARDPOTENTIAL
15
作者 刘吕桥 曾娟 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期455-473,共19页
In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation e... In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L^(2) weighted estimates. 展开更多
关键词 Boltzmann equation Gevrey regularity non-cutoff hard potential
下载PDF
Besov Estimates for Sub-Elliptic Equations in the Heisenberg Group
16
作者 Huimin Cheng Feng Zhou 《Advances in Pure Mathematics》 2024年第9期744-758,共15页
In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Be... In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Besov spaces with more general assumptions on coefficients for both homogeneous equations and non-homogeneous equations. This study of regularity estimates expands the Calderón-Zygmund theory in the Heisenberg group. 展开更多
关键词 Heisenberg Group Sub-Elliptic equations REGULARITY Besov Spaces
下载PDF
On entire solutions of some Fermat type differential-difference equations
17
作者 LONG Jian-ren QIN Da-zhuan 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期69-88,共20页
On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear ... On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear differential-difference equations.These results extend and improve some previous in[5,14]. 展开更多
关键词 entire solutions differential-difference equations EXISTENCE finite order
下载PDF
ELLIPTIC EQUATIONS IN DIVERGENCE FORM WITH DISCONTINUOUS COEFFICIENTS IN DOMAINS WITH CORNERS
18
作者 Jun CHEN Xuemei DENG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1903-1915,共13页
We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across th... We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across the discontinuity surfaces and provide an example to illustrate the issue regarding the regularity at the corners. 展开更多
关键词 elliptic equations divergence form discontinuous coefficients corner regularity
下载PDF
ON THE STABILITY OF PERIODIC SOLUTIONS OF PIECEWISE SMOOTH PERIODIC DIFFERENTIAL EQUATIONS
19
作者 Maoan HAN Yan YE 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1524-1535,共12页
In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic sol... In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic solution.We also present examples of some applications. 展开更多
关键词 periodic solution Poincarémap periodic equation stability
下载PDF
On Two Types of Stability of Solutions to a Pair of Damped Coupled Nonlinear Evolution Equations
20
作者 Mark Jones 《Advances in Pure Mathematics》 2024年第5期354-366,共13页
The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid... The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid dynamics, fibre optics or electron plasmas. The main result is that any small perturbation to the solution remains small for all time. Here small is interpreted as being both in the supremum sense and the square integrable sense. 展开更多
关键词 Nonlinear Schrödinger equation STABILITY Capillary-Gravity Waves
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部