This paper gives a practical schema for using DSP boards to construct Vehicle License Plate Recognition (VLPR) modules that could be embedded in any Intelligent Transportation System (ITS). Using DSP can avoid the hea...This paper gives a practical schema for using DSP boards to construct Vehicle License Plate Recognition (VLPR) modules that could be embedded in any Intelligent Transportation System (ITS). Using DSP can avoid the heavy investment in dedicated VLPR system and improve the computational power compared to PC software environment. Low cost, high computational power, and high flexibility of DSP provide the License Plate Recognition System (LPRS) an excellent cost-effective solution to execute the major part of the recognition tasks. This paper describes a successful implementation of VLPR system based on Texas Instruments (TI)'s TMS320DM642. The DSP board acquires video (which could be output to a monitor for surveillance) from a camera, captures images from the video, locates and recognizes the license plates in images, and then sends the recognized results and related images after compression to a host PC through the network. Finally, the overall software is optimized according to the features of DM642 chip. Experiments showed that the DSP VLPR system performs well on the local license plates, and that the processing speed and accuracy can meet the requirement of practical applications.展开更多
基金the National Natural Science Foundation of China (No. 60473106)the Hi-Tech Research and Development Program (863) of China (Nos. 2007AA01Z311 and 2007AA04ZA5)
文摘This paper gives a practical schema for using DSP boards to construct Vehicle License Plate Recognition (VLPR) modules that could be embedded in any Intelligent Transportation System (ITS). Using DSP can avoid the heavy investment in dedicated VLPR system and improve the computational power compared to PC software environment. Low cost, high computational power, and high flexibility of DSP provide the License Plate Recognition System (LPRS) an excellent cost-effective solution to execute the major part of the recognition tasks. This paper describes a successful implementation of VLPR system based on Texas Instruments (TI)'s TMS320DM642. The DSP board acquires video (which could be output to a monitor for surveillance) from a camera, captures images from the video, locates and recognizes the license plates in images, and then sends the recognized results and related images after compression to a host PC through the network. Finally, the overall software is optimized according to the features of DM642 chip. Experiments showed that the DSP VLPR system performs well on the local license plates, and that the processing speed and accuracy can meet the requirement of practical applications.