Active vibration control of functionally graded material (FGM) plate with integrated piezoelectric layers is studied. In this regard, a finite element model based on the classical plate theory is adopted and extended ...Active vibration control of functionally graded material (FGM) plate with integrated piezoelectric layers is studied. In this regard, a finite element model based on the classical plate theory is adopted and extended to the case of FGM plate to obtain a space state equation. Rectangular four node and eight node elements are used for the analysis purpose. The material proprieties of FG plate are assumed to be graded along the thickness direction. In order to control the vibration of the plate, an LQR controller has been designed and developed. The weighing factors are obtained by using genetic algorithm. The proposed results of finite element modeling are verified with the results obtained using ANSYS. Also the validation of methodology is done with comparing the results with that of available in literature and found in well agreement. Further analysis is performed for three sets of power law exponent n = 0, 1 and 100 which gives benchmark results for vibration control of FGM piezoelectric plate.展开更多
文摘Active vibration control of functionally graded material (FGM) plate with integrated piezoelectric layers is studied. In this regard, a finite element model based on the classical plate theory is adopted and extended to the case of FGM plate to obtain a space state equation. Rectangular four node and eight node elements are used for the analysis purpose. The material proprieties of FG plate are assumed to be graded along the thickness direction. In order to control the vibration of the plate, an LQR controller has been designed and developed. The weighing factors are obtained by using genetic algorithm. The proposed results of finite element modeling are verified with the results obtained using ANSYS. Also the validation of methodology is done with comparing the results with that of available in literature and found in well agreement. Further analysis is performed for three sets of power law exponent n = 0, 1 and 100 which gives benchmark results for vibration control of FGM piezoelectric plate.